A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of ‘Candidatus Liberibacter asiaticus’ in Citrus
Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, <i>Diaphorina citri</i> Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy <i>nrd</i>B gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the <i>nrd</i>B target as low as ~2.6 Log<sub>10</sub> copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.