‘Candidatus Phytoplasma ziziphi’ Changes the Metabolite Composition of Jujube Tree Leaves and Affects the Feeding Behavior of Its Insect Vector Hishimonus hamatus Kuoh


Citation
Liu et al. (2023). Insects 14 (9)
Names (1)
Subjects
Insect Science
Abstract
Hishimonus hamatus Kuoh is a leafhopper species native to China that feeds on Chinese jujube leaves. This leafhopper species has been verified to transmit jujube witches’ broom (JWB) disease, caused by phytoplasma, a fatal plant pathogen, which belongs to the phytoplasma subgroup 16SrV-B. The transmission of JWB phytoplasma largely relies on the feeding behavior of piercing–sucking leafhoppers. However, the specific mechanisms behind how and why the infection of JWB influences the feeding behavior of these leafhoppers are not fully understood. To address this, a study was conducted to compare the feeding patterns of H. hamatus when feeding JWB-infested jujube leaves to healthy leaves using the electrical penetration graph (EPG) technique. Then, a widely targeted metabolome analysis was performed to identify differences in the metabolite composition of JWB-infected jujube leaves and that of healthy jujube leaves. The results of EPG analyses revealed that when feeding on JWB-infected jujube leaves, H. hamatus exhibited an increased frequency of phloem ingestion and spent longer in the phloem feeding phase compared to when feeding on healthy leaves. In addition, the results of metabolomic analyses showed that JWB-infected leaves accumulated higher levels of small-molecular carbohydrates, free amino acids, and free fatty acids, as well as lower levels of lignans, coumarins and triterpenoids compared to healthy leaves. The above results indicated that the H. hamatus preferentially fed on the phloem of infected leaves, which seems to be linked to the transmission of the JWB phytoplasma. The results of metabolomic analyses partially imply that the chemical compounds might play a role in making the infected leaves more attractive to H. hamatus for feeding.
Authors
Publication date
2023-09-06
DOI
10.3390/insects14090750

© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license