Publications
3887

Sort by date names
Browse by authors subjects journals

Candidatus Rickettsia senegalensis in Cat Fleas (Siphonaptera: Pulicidae) Collected from Dogs and Cats in Cauca, Colombia

Citation
Betancourt-Ruiz et al. (2019). Journal of Medical Entomology
Names
Ca. Rickettsia senegalensis
Abstract
AbstractRickettsia typhi and Rickettsia felis (Rickettsiales: Rickettsiaceae) are flea-transmitted pathogens. They are important causes of acute febrile illness throughout the world. We, therefore, sought to identify the rickettsial species present in the fleas of dogs and cats in the department of Cauca, Colombia. In this study, we collected 1,242 fleas from 132 dogs and 43 fleas from 11 cats. All fleas were morphologically identified as Ctenocephalides felis (Bouché) adults and organized in po

Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon “ Candidatus Nitrosotenuis uzonensis” at Different Growth Temperatures

Citation
Bale et al. (2019). Applied and Environmental Microbiology 85 (20)
Names
Ca. Nitrosotenuis uzonensis
Abstract
For Thaumarchaeota , the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX 86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX 86 pro

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea

Citation
Hua et al. (2019). Nature Communications 10 (1)
Names
Ca. Methanoproducendum senex
Abstract
Abstract Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phy

Genome Sequence of “ Candidatus Nitrosocosmicus franklandus” C13, a Terrestrial Ammonia-Oxidizing Archaeon

Citation
Nicol et al. (2019). Microbiology Resource Announcements 8 (40)
Names
Ca. Nitrosocosmicus franklandus
Abstract
“ Candidatus Nitrosocosmicus franklandus” C13 is an ammonia-oxidizing archaeon (AOA) isolated from soil. Its complete genome is 2.84 Mb and possesses predicted AOA metabolic pathways for energy generation and carbon dioxide fixation but no typical surface layer (S-layer) proteins, only one ammonium transporter, and divergent A-type ATP synthase genes.