SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Nesbø

JSON
See as cards

Nesbø, Camilla L.


Publications
2

CitationNamesAbstract
“ Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture Chen et al. (2023). Applied and Environmental Microbiology 89 (5) “Nealsoniibacteriota”
Candidatus Nealsonbacteria (OD1) in a methanogenic benzene-degrading enrichment culture is likely an ectosymbiotic biomass recycler Chen et al. (2022). “Nealsoniibacteriota”

“ Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture
An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny “ Candidatus Nealsonbacteria” cells attached to a large Methanothrix cell, revealing a novel episymbiosis.
Candidatus Nealsonbacteria (OD1) in a methanogenic benzene-degrading enrichment culture is likely an ectosymbiotic biomass recycler
AbstractThe Candidate Phyla Radiation (CPR, or superphylum Patescibacteria) is a very large group of bacteria with few cultivated representatives first discovered by culture-independent metagenomic analyses. Within the CPR, the candidate phylum Parcubacteria (previously OD1) is prevalent in anoxic lake sediments and groundwater. We identified a bacterium belonging to the Parcubacteria in a methanogenic benzene-degrading enrichment culture originally derived from oil-contaminated sediments. Candidatus Nealsonbacteria DGGOD1a is the only bacterium other than a previously identified benzene-degrading fermenter (Deltaproteobacteria Candidate Sva0485 clade ORM2) consistently and abundantly detected in all active benzene-degrading transfers of this culture. Therefore, we hypothesized that DGGOD1a must serve an important role in sustaining anaerobic benzene metabolism in the consortium. Growth experiments using a variety of possible substrates suggested that it is involved in biomass recycling. Microscopic observations supported by molecular analyses and a closed genome revealed an epibiont lifestyle with very small Ca. Nealsonbacteria DGGOD1a closely associated with much larger Methanosaeta. The images reveal a first example of cross-domain episymbiosis that may apply to other Ca. Nealsonbacteria found in diverse environments.
Search