SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Donovan

JSON
See as cards

Donovan, Nerida


Publications
2

CitationNamesAbstract
Natural Infection of Murraya paniculata and Murraya sumatrana with ‘Candidatus Liberibacter asiaticus’ in Java Lestiyani et al. (2024). Plant Disease 108 (9) Ca. Liberibacter asiaticus
Update and Validation of the 16S rDNA qPCR Assay for the Detection of Three ‘Candidatus Liberibacter Species’ Following Current MIQE Guidelines and Workflow Osman et al. (2023). PhytoFrontiers™ 3 (1) Liberibacter Ca. Liberibacter asiaticus

Natural Infection of Murraya paniculata and Murraya sumatrana with ‘Candidatus Liberibacter asiaticus’ in Java
The phloem-limited bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is the putative causal pathogen of the severe Asiatic form of huanglongbing (citrus greening) and is most commonly transmitted by the Asiatic citrus psyllid Diaphorina citri. CLas severely affects many Citrus species and hybrids and has been recorded in the Citrus relative, orange jasmine, Murraya paniculata (L.) Jack (syn. M. exotica L.). In this study, 13 accessions of three Murraya species (M. paniculata, M. sumatrana Roxb., and M. lucida [G.Forst.] Mabb.) and the Papuan form of a putative hybrid (M. omphalocarpa Hayata) were identified morphologically and molecularly based on sequence identity of the matK-5′trnK region of the chloroplast genome, and infection on these plants under field conditions was determined by PCR and quantitative real-time PCR (qPCR) on two to four occasions over 14 months. CLas was repeatedly detected in leaflet midribs by PCR and qPCR on four and three accessions of M. paniculata and M. sumatrana, respectively. It was not detected in leaflet midribs of single accessions of M. lucida and M. omphalocarpa. The species identification of the CLas-positive accessions was further confirmed using all the molecular taxonomic markers consisting of the six fragments of the maternally inherited chloroplast genome and part of the nuclear-encoded internal transcribed spacer (ITS) region. The results indicated that natural infection of M. paniculata and M. sumatrana with CLas can occur in Java. To our knowledge, this is the first demonstration of the natural infection of M. sumatrana with CLas. Further studies are required to determine whether infections persist in the absence of D. citri.
Update and Validation of the 16S rDNA qPCR Assay for the Detection of Three ‘Candidatus Liberibacter Species’ Following Current MIQE Guidelines and Workflow
An updated real-time multiplex quantitative polymerase chain reaction (qPCR) assay was designed and validated for the simultaneous detection of three ‘ Candidatus Liberibacter species’ (CLsp), ‘ Ca. Liberibacter asiaticus’ (CLas), ‘africanus’ (CLaf), and ‘americanus’ (CLam), associated with the huanglongbing disease of citrus. The multiplex assay was designed based on the qPCR assay published in 2006 by Li et al., considering all available CLsp 16S rRNA gene sequences in GenBank and the MIQE guidelines and workflow for qPCR optimization, which became available after 2006. When using the updated multiplex CLsp qPCR assay compared with singleplex qPCR, no significant increase in quantitative cycle (Cq) values was detected. The specificity and sensitivity of the updated qPCR assay was optimal, and measuring the intra- and interassay variations confirmed the reproducibility and repeatability of the assay. The assay was also successfully used with a large number of diverse samples at independent laboratories in four countries, thus demonstrating its transferability, applicability, practicability, and robustness as different qPCR reaction conditions or instruments had a minor effect on Cq values. This updated multiplex CLsp qPCR assay can be used in a variety of citrus surveys, germplasm, or nursery stock programs that require different pathogen detection tools for their successful operation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Search