SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Brodie

JSON
See as cards

Brodie, Eoin L.


Publications
2

CitationNamesAbstract
Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system Anantharaman et al. (2016). Nature Communications 7 (1) “Kerfeldiibacteriota” “Komeiliibacteriota” “Lindowiibacteriota” “Liptoniibacteriota” “Lloydiibacteriota” “Margulisiibacteriota” “Nealsoniibacteriota” “Niyogiibacteriota” “Portnoyibacteriota” “Raymondiibacteriota” “Ryaniibacteriota” “Schekmaniibacteriota” “Spechtiibacteriota” “Staskawicziibacteriota” “Sungiibacteriota” “Tagaibacteriota” “Tayloriibacteriota” “Terryibacteriota” “Vebleniibacteriota” “Yonathiibacteriota” “Zambryskiibacteriota” “Rifleibacteriota” “Ozemibacteria”
Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth Chivian et al. (2008). Science 322 (5899) Desulforudis audaxviator Ts Desulforudis

Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system
AbstractThe subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth’s biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.
Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth
DNA from low-biodiversity fracture water collected at 2.8-kilometer depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator , composes >99.9% of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate-reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon by using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent life-style well suited to long-term isolation from the photosphere deep within Earth's crust and offers an example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.
Search