SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Keim

JSON
See as cards

Keim, Carolina N.


Publications
5

CitationNamesAbstract
On the backward excursions in the free-swimming magnetotactic multicellular prokaryote ‘Candidatus Magnetoglobus multicellularis’ Keim, Farina (2025). Brazilian Journal of Microbiology 56 (1) Ca. Magnetoglobus multicellularis
Swimming behavior of the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ near solid boundaries and natural magnetic grains Keim et al. (2021). Antonie van Leeuwenhoek 114 (11) Ca. Magnetoglobus multicellularis
Effect of applied magnetic fields on motility and magnetotaxis in the uncultured magnetotactic multicellular prokaryote ‘ Candidatus <scp>M</scp> agnetoglobus multicellularis’ Keim et al. (2018). Environmental Microbiology Reports 10 (4)
Text
Swimming behaviour of the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ under applied magnetic fields and ultraviolet light Almeida et al. (2013). Antonie van Leeuwenhoek 103 (4) Ca. Magnetoglobus multicellularis
Ultrastructure and cytochemistry of lipid granules in the many-celled magnetotactic prokaryote, ‘Candidatus Magnetoglobus multicellularis’ Silva et al. (2008). Micron 39 (8) Ca. Magnetoglobus multicellularis

Effect of applied magnetic fields on motility and magnetotaxis in the uncultured magnetotactic multicellular prokaryote ‘ Candidatus <scp>M</scp> agnetoglobus multicellularis’
Summary Magnetotactic bacteria are found in the chemocline of aquatic environments worldwide. They produce nanoparticles of magnetic minerals arranged in chains in the cytoplasm, which enable these microorganisms to align to magnetic fields while swimming propelled by flagella. Magnetotactic bacteria are diverse phylogenetically and morphologically, including cocci, rods, vibria, spirilla and also multicellular forms, known as magnetotactic multicellular prokaryotes (MMPs). We used video‐microscopy to study the motility of the uncultured MMP ‘ Candidatus Magnetoglobus multicellularis’ under applied magnetic fields ranging from 0.9 to 32 Oersted (Oe). The bidimensional projections of the tridimensional trajectories where interpreted as plane projections of cylindrical helices and fitted as sinusoidal curves. The results showed that ‘ Ca . M. multicellularis’ do not orient efficiently to low magnetic fields, reaching an efficiency of about 0.65 at 0.9–1.5 Oe, which are four to six times the local magnetic field. Good efficiency (0.95) is accomplished for magnetic fields ≥10 Oe. For comparison, unicellular magnetotactic microorganisms reach such efficiency at the local magnetic field. Considering that the magnetic moment of ‘ Ca . M. multicellularis’ is sufficient for efficient alignment at the Earth's magnetic field, we suggest that misalignments are due to flagella movements, which could be driven by photo‐, chemo‐ and/or other types of taxis.
Search