SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Dickinson

JSON
See as cards

Dickinson, Matthew


Publications
5

CitationNamesAbstract
Genome-Informed Design of a LAMP Assay for the Specific Detection of the Strain of ‘Candidatus Phytoplasma asteris’ Phytoplasma Occurring in Grapevines in South Africa Alič et al. (2022). Plant Disease 106 (11) Ca. Phytoplasma Ca. Phytoplasma asteri
Population genetic analysis reveals a low level of genetic diversity of ‘Candidatus Phytoplasma aurantifolia’ causing witches’ broom disease in lime Al-Abadi et al. (2016). SpringerPlus 5 (1) Ca. Phytoplasma aurantifolia
Draft Genome Sequence of “ Candidatus Phytoplasma oryzae” Strain Mbita1, the Causative Agent of Napier Grass Stunt Disease in Kenya Fischer et al. (2016). Genome Announcements 4 (2) Ca. Phytoplasma oryzae
‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique Harrison et al. (2014). International Journal of Systematic and Evolutionary Microbiology 64 (Pt_6) Ca. Phytoplasma palmicola
‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus) Nejat et al. (2013). International Journal of Systematic and Evolutionary Microbiology 63 (Pt_2) Ca. Phytoplasma malaysianum

Genome-Informed Design of a LAMP Assay for the Specific Detection of the Strain of ‘Candidatus Phytoplasma asteris’ Phytoplasma Occurring in Grapevines in South Africa
Grapevine yellows is one of the most damaging phytoplasma-associated diseases worldwide. It is linked to several phytoplasma species, which can vary regionally due to phytoplasma and insect-vector diversity. Specific, rapid, and reliable detection of the grapevine yellows pathogen has an important role in phytoplasma control. The purpose of this study was to develop and validate a specific loop-mediated isothermal amplification (LAMP) assay for detection of a distinct strain of grapevine ‘Candidatus Phytoplasma asteris’ that is present in South Africa, through implementation of a genome-informed test design approach. Several freely available, user-friendly, web-based tools were coupled to design the specific LAMP assays. The criteria for selection of the assays were set for each step of the process, which resulted in four experimentally operative LAMP assays that targeted the ftsH/hflB gene region, specific to the aster yellows phytoplasma strain from South Africa. A real-time PCR was developed, targeting the same genetic region, to provide extensive validation of the LAMP assay. The validated molecular assays are highly specific to the targeted aster yellows phytoplasma strain from South Africa, with good sensitivity and reproducibility. We show a genome-informed molecular test design and an efficient validation approach for molecular tests if reference and sample materials are sparse and hard to obtain. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Draft Genome Sequence of “ Candidatus Phytoplasma oryzae” Strain Mbita1, the Causative Agent of Napier Grass Stunt Disease in Kenya
ABSTRACT Phytoplasmas are bacterial plant pathogens with devastating impact on agricultural production worldwide. In eastern Africa, Napier grass stunt disease causes serious economic losses in the smallholder dairy industry. This draft genome sequence of “ Candidatus Phytoplasma oryzae” strain Mbita1 provides insight into its genomic organization and the molecular basis of pathogenicity.
‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique
In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100 % identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0–99.6 % identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d’Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5 % sequence identity with all previously described members of ‘Candidatus Phytoplasma ’. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of ‘Candidatus Phytoplasma ’, justifying its recognition as the reference strain of a novel taxon, ‘Candidatus Phytoplasma palmicola’. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d’Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.
‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus)
This study addressed the taxonomic position and group classification of a phytoplasma responsible for virescence and phyllody symptoms in naturally diseased Madagascar periwinkle plants in western Malaysia. Unique regions in the 16S rRNA gene from the Malaysian periwinkle virescence (MaPV) phytoplasma distinguished the phytoplasma from all previously described ‘ Candidatus Phytoplasma ’ species. Pairwise sequence similarity scores, calculated through alignment of full-length 16S rRNA gene sequences, revealed that the MaPV phytoplasma 16S rRNA gene shared 96.5 % or less sequence similarity with that of previously described ‘ Ca. Phytoplasma ’ species, justifying the recognition of the MaPV phytoplasma as a reference strain of a novel taxon, ‘Candidatus Phytoplasma malaysianum’. The 16S rRNA gene F2nR2 fragment from the MaPV phytoplasma exhibited a distinct restriction fragment length polymorphism (RFLP) profile and the pattern similarity coefficient values were lower than 0.85 with representative phytoplasmas classified in any of the 31 previously delineated 16Sr groups; therefore, the MaPV phytoplasma was designated a member of a new 16Sr group, 16SrXXXII. Phytoplasmas affiliated with this novel taxon and the new group included diverse strains infecting periwinkle, coconut palm and oil palm in Malaysia. Three phytoplasmas were characterized as representatives of three distinct subgroups, 16SrXXXII-A, 16SrXXXII-B and 16SrXXXII-C, respectively.
Search