SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Kirkegaard

JSON
See as cards

Kirkegaard, Rasmus H


Publications
2

CitationNamesAbstract
Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales Mueller et al. (2023). The ISME Journal 17 (11) “Nitronereus thalassa” “Nitronereus”
Cultivation and genomic analysis ofCandidatusNitrosocaldus islandicus, a novel obligately thermophilic ammonia-oxidizingThaumarchaeon Daebeler et al. (2017). Ca. Nitrosocaldus islandicus

Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales
Abstract Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named “Ca. Nitronereus thalassa”, represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, “Ca. Nitronereus thalassa” harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, “Ca. Nitronereus thalassa” appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.
Cultivation and genomic analysis ofCandidatusNitrosocaldus islandicus, a novel obligately thermophilic ammonia-oxidizingThaumarchaeon
AbstractAmmonia-oxidizing archaea (AOA) within the phylumThaumarchaeaare the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from theNitrosocaldusclade, group 1.1b and group 1.1aThaumarchaeain terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50 °C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a novelThaumarchaeonfrom the deep-branchingNitrosocaldaceaefamily of which we have obtained a high (∼85 %) enrichment from biofilm of an Icelandic hot spring (73 °C). This AOA, which we provisionally refer to as “CandidatusNitrosocaldus islandicus”, is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 °C and 70 °C.Ca.N. islandicus encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks anirKgene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent asCa.N. islandicus is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed thatCa.N. islandicus has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase(iorAB)as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizingThaumarchaea.Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
Search