SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Leisch

JSON
See as cards

Leisch, Nikolaus


Publications
5

CitationNamesAbstract
An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host Porras et al. (2024). Nature Microbiology 9 (11) Endonucleibacter “Endonucleibacter bathymodioli” Endonucleibacter childressii Endonucleibacter puteoserpentis Ts
Text
Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria) Assié et al. (2020). The ISME Journal 14 (1) “Thiobarbaceae” Ca. Thiobarba
Text
Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2 Gruber-Vodicka et al. (2019). Nature Microbiology 4 (9) “Grellia alia”
Text
Characterization of the First “ Candidatus Nitrotoga” Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria Kitzinger et al. (2018). mBio 9 (4) Ca. Nitrotoga Ca. Nitrotoga fabula
Text
Host-Polarized Cell Growth in Animal Symbionts Pende et al. (2018). Current Biology 28 (7) “Thiosymbium robbeae”

An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host
AbstractA limited number of bacteria are able to colonize the nuclei of eukaryotes. ‘Candidatus Endonucleobacter’ infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that ‘Candidatus Endonucleobacter’ does not obtain most of its nutrition from nuclear DNA or RNA. Instead, ‘Candidatus Endonucleobacter’ upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7–13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that ‘Ca. Endonucleobacter’ acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria)
Abstract Most autotrophs use the Calvin–Benson–Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts (“Candidatus Thiobarba”) of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that “Ca. Thiobarba” switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated “Ca. Thiobarba”. Direct stable isotope fingerprinting showed that “Ca. Thiobarba” has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.
Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2
AbstractPlacozoa is an enigmatic phylum of simple, microscopic, marine metazoans1,2. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host3–6. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)7,8 and has a genomic repertoire similar to that of rickettsial parasites9,10, but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host’s internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations11–13. This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan’s nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter.
Characterization of the First “ Candidatus Nitrotoga” Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria
ABSTRACT Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus “ Candidatus Nitrotoga” are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure “ Ca . Nitrotoga” culture was available. Here we obtained the first “ Ca . Nitrotoga” isolate from activated sludge. This organism, “ Candidatus Nitrotoga fabula,” prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous “ Ca . Nitrotoga” enrichments, which were described as cold-adapted NOB. “ Ca . Nitrotoga fabula” also showed an unusually high tolerance to nitrite (activity at 30 mM NO 2 − ) and nitrate (up to 25 mM NO 3 − ). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent K m ( K m (app) ) of ~89 µM nitrite and a V max of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of “ Ca . Nitrotoga fabula” were reconstructed from the closed genome. “ Ca . Nitrotoga fabula” possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in “ Ca . Nitrotoga” and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, “ Ca . Nitrotoga fabula” uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable “ Ca . Nitrotoga fabula” to survive nitrite depletion and colonize new niches. IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus “ Candidatus Nitrotoga” and performed a detailed physiological and genomic characterization of this organism (“ Candidatus Nitrotoga fabula”). Differences between key phenotypic properties of “ Ca . Nitrotoga fabula” and those of previously enriched “ Ca . Nitrotoga” members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that “ Ca . Nitrotoga” are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in “ Ca . Nitrotoga fabula” expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.
Search