SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Kuypers

JSON
See as cards

Kuypers, Marcel M. M.


Publications
5

CitationNamesAbstract
Rhizobia–diatom symbiosis fixes missing nitrogen in the ocean Tschitschko et al. (2024). Nature 630 (8018) “Tectiglobus diatomicola”
Anaerobic endosymbiont generates energy for ciliate host by denitrification Graf et al. (2021). Nature 591 (7850) Azoamicus Azoamicus ciliaticola Ts
Bloom of a denitrifying methanotroph, ‘ Candidatus Methylomirabilis limnetica’, in a deep stratified lake Graf et al. (2018). Environmental Microbiology 20 (7) Ca. Methylomirabilis limnetica
Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga Thompson et al. (2012). Science 337 (6101) “Atelocyanobacterium thalassae”
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria Ettwig et al. (2010). Nature 464 (7288) Methylomirabilis oxygeniifera Ts Methylomirabilis

Rhizobia–diatom symbiosis fixes missing nitrogen in the ocean
AbstractNitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3–5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, ‘Candidatus Tectiglobus diatomicola’, which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia–legume symbioses on land6. Our results show that the rhizobia–diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.
Anaerobic endosymbiont generates energy for ciliate host by denitrification
AbstractMitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe ‘Candidatus Azoamicus ciliaticola’, which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. ‘Candidatus A. ciliaticola’ contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron–sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. ‘Candidatus A. ciliaticola’ and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.
Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga
Fixing on a Marine Partnership Nitrogen fixation by microorganisms determines the productivity of the biosphere. Although plants photosynthesize by virtue of the ancient incorporation of cyanobacteria to form chloroplasts, no equivalent endosymbiotic event has occurred for nitrogen fixation. Nevertheless, in terrestrial environments, nitrogen-fixing symbioses between bacteria and plants, for example, are common. Thompson et al. (p. 1546 ) noticed that the ubiquitous marine cyanobacterium UCYN-A has an unusually streamlined genome lacking components of the photosynthetic machinery and central carbon metabolism—all suggestive of being an obligate symbiont. By using gentle filtration methods for raw seawater, a tiny eukaryote partner for UCYN-A of less than 3-µm in diameter was discovered. The bacterium sits on the cell wall of this calcifying picoeukaryote, donating fixed nitrogen and receiving fixed carbon in return.
Search