SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Lee

JSON
See as cards

Lee, Donghwan


Publications
3

CitationNamesAbstract
Citrus Huanglongbing is an immune-mediated disease that can be treated by mitigating reactive oxygen species triggered cell death of the phloem tissues caused by Candidatus Liberibacter asiaticus Wang et al. (2021). Ca. Liberibacter asiaticus
Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ‘Candidatus Liberibacter asiaticus’ Titer Li et al. (2021). Phytopathology® 111 (7) Ca. Liberibacter asiaticus
The in Planta Effective Concentration of Oxytetracycline Against ‘Candidatus Liberibacter asiaticus’ for Suppression of Citrus Huanglongbing Li et al. (2019). Phytopathology® 109 (12) Ca. Liberibacter asiaticus

Citrus Huanglongbing is an immune-mediated disease that can be treated by mitigating reactive oxygen species triggered cell death of the phloem tissues caused by Candidatus Liberibacter asiaticus
AbstractThe immune system is critical for keeping animals and plants healthy from pathogens. However, immune-mediated diseases are also common for human. Immune-mediated diseases have not been reported for plants. Here, we present evidence that citrus Huanglongbing (HLB), caused by phloem-colonizing Candidatus Liberibacter asiaticus (CLas), is an immune-mediated disease. CLas infection of Citrus sinensis stimulated systemic and chronic immune response in the phloem tissues including reactive oxygen species (ROS) production as indicated by H2O2, callose deposition, and induction of immune related genes. Systemic cell death of companion and sieve element cells, but not surrounding parenchyma cells, was observed following ROS production triggered by CLas. ROS production triggered by CLas localized in phloem tissues. The H2O2 concentration in exudates extracted from phloem enriched bark tissue of CLas infected plants reached a threshold of killing citrus protoplast cells, which was suppressed by uric acid (a ROS scavenger) and gibberellin. Foliar spray of HLB positive citrus with antioxidants (uric acid and rutin) and gibberellin significantly reduced both H2O2 concentrations and cell death in phloem tissues induced by CLas and reduced HLB symptoms. RNA-seq analyses of CLas infected and health C. sinensis support that CLas causes oxidative stress. In sum, HLB is an immune-mediated disease and both mitigating ROS via antioxidants and promoting plant growth can reduce cell death of the phloem tissues caused by CLas, thus controlling HLB.
Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ‘Candidatus Liberibacter asiaticus’ Titer
Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by ‘Candidatus Liberibacter asiaticus’ (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold ≥36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management.
The in Planta Effective Concentration of Oxytetracycline Against ‘Candidatus Liberibacter asiaticus’ for Suppression of Citrus Huanglongbing
Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.
Search