Huanglongbing (HLB) is an important citrus disease associated with the phloem-limited, uncultured bacterium ‘Candidatus Liberibacter asiaticus’(CLas). Effective treatments against CLas have to be validated in the field, however, methods for the field assessment of treatment effectiveness are time-consuming, in part because DNA-based assays, including quantitative PCR (qPCR), cannot differentiate between live and dead bacterial DNA. The aim of this study was to develop a method for rapid the evaluation of HLB therapies in field experiments. To this aim, a DNA extraction method from citrus leaf tissues with propidum monoazide (PMA), a dye that binds covalently to dsDNA making it unavailable for amplification in subsequent qPCR reactions, was optimized. The results indicated that the efficacy of PMA-qPCR was highly dependent on the primer set used. Primers targeting the 16S region of CLas showed a clear distinction between qPCR from PMA-treated and non-treated samples, while the RNR and LJ900 primers did not show significant differences between the DNA extraction methods. The PMA-qPCR viability analysis of CLas from citrus cuttings treated with different ampicillin (Amp) concentrations showed that all concentrations reduced CLas titers significantly starting 4 days after the initial treatment, unlike the water treatment, which did not show any change. This method was used for assessing the antibacterial activity of Amp, Streptomycin, Oxytetracycline (OTC), and a water control in field tests. The PMA-qPCR results indicated that Amp and OTC displayed significant antibacterial activity against CLas by 8 days post-injection, which was not detected in the non-PMA qPCR analysis. This method could allow the rapid validation of treatments against CLas in field experiments and facilitate the implementation of effective management strategies against HLB.