SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Armstrong

JSON
See as cards

Armstrong, Cheryl


Publications
2

CitationNamesAbstract
Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Candidatus Liberibacter asiaticus Zheng et al. (2024). Horticulture Research 11 (3) Ca. Liberibacter asiaticus
Identification of a Chromosomal Deletion Mutation and the Dynamics of Two Major Populations of ‘Candidatus Liberibacter asiaticus’ in Its Hosts Armstrong et al. (2022). Phytopathology® 112 (1) Ca. Liberibacter asiaticus

Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Candidatus Liberibacter asiaticus
Abstract Candidatus Liberibacter asiaticus (Las) is one of the causal agents of huanglongbing (HLB), the most devastating disease of citrus worldwide. Due to the intracellular lifestyle and significant genome reduction, culturing Las in vitro has proven to be extremely challenging. In this study, we optimized growth conditions and developed a semi-selective medium based on the results of nutritional and antibiotic screening assays. Using these optimized conditions, we were able to grow Las in the LG liquid medium with ca.100- to 1000-fold increase, which peaked after 4 to 6 weeks and were estimated to contain 106 to 107 cells/ml. The cultured Las bacteria remained in a dynamic state of growth for over 20 months and displayed limited growth in subcultures. The survival and growth of Las was confirmed by fluorescence in situ hybridization with Las-specific probes and expression of its metabolic genes. Growth of Las in the optimized medium relied on the presence of a helper bacterium, Stenotrophomonas maltophilia FLMAT-1 that is multi-drug resistant and dominant in the Las co-culture system. To recapitulate the disease, the co-cultured Las was inoculated back to citrus seedlings via psyllid feeding. Although the Las-positive rate of the fed psyllids and inoculated plants were relatively low, this is the first demonstration of partial fulfillment of Koch’s postulates with significant growth of Las in vitro and a successful inoculation of cultured Las back to psyllids and citrus plants that resulted in HLB symptoms. These results provide new insights into Las growth in vitro and a system for improvement towards axenic culture and anti-Las compound screening.
Identification of a Chromosomal Deletion Mutation and the Dynamics of Two Major Populations of ‘Candidatus Liberibacter asiaticus’ in Its Hosts
‘Candidatus Liberibacter asiaticus’ (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of an ∼8.3-kb DNA region of the Las genome containing eight putative open reading frames flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in >2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts, whereas an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.
Search