SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Journals Horticulturae

JSON
See as cards

Horticulturae


Publications
3

CitationNamesAbstract
Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion Cavichioli et al. (2024). Horticulturae 10 (9) Ca. Liberibacter asiaticus Liberibacter
The Effect of Biotic Stress in Plant Species Induced by ‘Candidatus Phytoplasma solani’—An Artificial Neural Network Approach Djalovic et al. (2024). Horticulturae 10 (5) Ca. Phytoplasma solani
Epidemiological Role of Dictyophara europaea (Hemiptera: Dictyopharidae) in the Transmission of ‘Candidatus Phytoplasma solani’ Cvrković et al. (2022). Horticulturae 8 (7) Ca. Phytoplasma solani

Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion
The symptoms of huanglongbing (HLB), a disease caused by the bacterium Candidatus Liberibacter asiaticus (CLas), are visible on the canopy of citrus plants. They include mottling of leaves followed by dropping and lopsided fruits with premature dropping. Loss in phloem functionality and degradation of the root system are also HLB symptoms with a severe impact on plant growth and production. Some Citrus relatives, such as Poncirus trifoliata and its hybrids, have shown more tolerance to HLB disease and low titers of CLas compared to Citrus species, but little is known about the effects of CLas on their root system. In this study, we investigated the effects of CLas-infected ‘Valencia’ scion on the citrandarin IAC3222 (a hybrid between P. trifoliata and Sunki mandarin) used as rootstock as well as interstock between ‘Valencia’ and Swingle citrumelo rootstock. At 13 months post-inoculation, the cycle threshold values (CT) for CLas in the infected scion samples indicated a high CLas titer (from 15.9 to 22.7) regardless of the rootstock variety or interstock used. However, no CLas-positive samples were detected in the roots of IAC3222 (CT ranging from 37.9 to 40.0), in contrast to all Swingle roots (CT ranging from 27.9 to 31.3). Both root volume and mass were reduced in IAC3222 compared to uninfected ‘Valencia’ scion, suggesting that scion infection damages roots, regardless of whether they are contaminated or not by CLas. The damage to the root system of IAC3222 was significantly less severe than that of the Swingle rootstock. Multivariate hierarchical analysis considering all evaluated parameters clustered the CLas-infected plants grafted on IAC3222 together with the non-inoculated plants. We concluded that the IAC3222 rootstock was less affected by the CLas-infected scion compared to the Swingle rootstock and is a promising rootstock to minimize the HLB effect on plant development.
The Effect of Biotic Stress in Plant Species Induced by ‘Candidatus Phytoplasma solani’—An Artificial Neural Network Approach
Infections with phytoplasma present one of the most significant biotic stresses influencing plant health, growth, and production. The phytoplasma ‘Candidatus Phytoplasma solani’ infects a variety of plant species. This pathogen impacts the physiological and morphological characteristics of plants causing stunting, yellowing, leaf curling, and other symptoms that can lead to significant economic losses. The aim of this study was to determine biochemical changes in peony (Paeonia tenuifolia L.), mint (Mentha × piperita L.), and dill (Anethum graveolens L.) induced by ‘Ca. Phytoplasma solani’ in Serbia as well as to predict the impact of the biotic stress using artificial neural network (ANN) modeling. The phylogenetic position of the Serbian ‘Ca. Phytoplasma solani’ strains originated from the tested hosts using 16S rRNA (peony and carrot strains) and plsC (mint and dill strains) sequences indicated by their genetic homogeneity despite the host of origin. Biochemical parameters significantly differed in asymptomatic and symptomatic plants, except for total anthocyanidins contents in dill and the capacity of peony and mint extracts to neutralize superoxide anions and hydroxyl radicals, respectively. Principal Component Analysis (PCA) showed a correlation between different chemical parameters and revealed a clear separation among the samples. Based on the ANN performance, the optimal number of hidden neurons for the calculation of TS, RG, PAL, LP, NBT, •OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car was nine (using MLP 8-9-13), as it produced high r2 values (1.000 during the training period) and low SOS values. Developing an effective early warning system for the detection of plant diseases in different plant species is critical for improving crop yield and quality.
Epidemiological Role of Dictyophara europaea (Hemiptera: Dictyopharidae) in the Transmission of ‘Candidatus Phytoplasma solani’
Bois noir, an economically important disease of grapevine yellows that causes significant economic losses in wine production, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines by cixiids Hyalesthes obsoletus and Reptalus panzeri. Polyphagous planthopper Dictyophara europaea, commonly found in natural habitats, harbors phytoplasmas from distinct groups and is an alternative vector in the open epidemiological cycles of the Flavescence dorée phytoplasma in grapevine in European vineyards. This study addresses the role of D. europaea in the transmission cycle(s) of ‘Ca. P. solani’ among wild habitats, natural reservoir plants, and the vineyard agroecosystem using MLSA and transmission trials with naturally infected adults to grapevine and Catharanthus roseus. The infection rates of D. europaea ranged from 7% to 13% in diverse locations, while reservoir herbaceous plants were infected in the amount of 29%. A total of 13 CaPsol MLSA genotypes were detected in D. europaea (7) and plants (8). Nine of them corresponded to previously identified genotypes. Two new genotypes were found in D. europaea (tuf-b1/S1/V14/Rqg50-sv1 and tuf-b1/S18/V14/Rqg50-sv1) and one in Convolvulus arvensis (tuf-b1/S1/V2-TA/Rqg31-sv1), whereas one was shared by two hosts, Crepis foetida and Daucus carota (tuf-b1/S1/V2-TA/STOL-sv1). Naturally infected D. europaea successfully transmitted the tuf-b1/S1/V2-TA/STOL type to five grapevines and six periwinkles, tuf-b1/S1/V2-TA/Rqg31 to one grapevine, and tuf-b1/S1/V2-TA/Rqg50 to one periwinkle, indicating that D. europaea is an intermediate vector in CaPsol epidemiological cycles.
Search