-
DOI: 10.1016/j.fm.2014.06.017
Ferrario M, Alzamora SM, Guerrero S
(2014).
Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound.
-
DOI: 10.1128/genomeA.00638-13
Shemesh M, Pasvolsky R, Sela N, Green SJ, Zakin V
(2013).
Draft Genome Sequence of Alicyclobacillus acidoterrestris Strain ATCC 49025.
-
DOI: 10.1099/ijsem.0.000695
Zhang B, Wu YF, Song JL, Huang ZS, Wang BJ, Liu SJ, Jiang CY
(2015).
Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water.
-
DOI: 10.1016/j.ram.2017.04.002
Ferrario MI, Guerrero SN
(2017).
Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels.
-
DOI: 10.1016/j.fm.2018.02.019
Kakagianni M, Kalantzi K, Beletsiotis E, Ghikas D, Lianou A, Koutsoumanis KP
(2018).
Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks.
-
DOI: 10.1111/1750-3841.14444
Herskovitz JE, Worobo RW, Goddard JM
(2019).
The Role of Solid Support Bound Metal Chelators on System-Dependent Synergy and Antagonism with Nisin.
-
DOI: 10.1016/j.ijfoodmicro.2019.108314
Van Luong TS, Moir CJ, Kaur M, Frank D, Bowman JP, Bradbury MI
(2019).
Diversity and guaiacol production of Alicyclobacillus spp. from fruit juice and fruit-based beverages.
-
DOI: 10.1016/j.ijfoodmicro.2022.110024
Kozono L, Fenoglio D, Ferrario M, Guerrero S
(2022).
Inactivation of Alicyclobacillus acidoterrestris spores, single or composite Escherichia coli and native microbiota in isotonic fruit-flavoured sports drinks processed by UV-C light.
-
DOI: 10.4315/0362-028X.JFP-12-496
Yue T, Pei J, Yuan Y
(2013).
Purification and characterization of anti-Alicyclobacillus bacteriocin produced by Lactobacillus rhamnosus.
-
DOI: 10.1016/j.ultras.2017.02.011
Rezek Jambrak A, Simunek M, Evacic S, Markov K, Smoljanic G, Frece J
(2017).
Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar.
-
DOI: 10.1016/j.ijfoodmicro.2010.02.029
Wang J, Hu X, Wang Z
(2010).
Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM14558(T) and Alicyclobacillus acidoterrestris DSM 3922(T) in apple juice by ultrasound.
-
DOI: 10.1111/j.1750-3841.2012.02790.x
Jiao L, Fan M, Hua C, Wang S, Wei X
(2012).
Expression of DnaJ gene in Alicyclobacillus acidoterrestris under stress conditions by quantitative real-time PCR.
-
DOI: 10.1016/j.ijfoodmicro.2013.08.015
Baysal AH, Molva C, Unluturk S
(2013).
UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juices.
-
DOI: 10.1016/j.ijfoodmicro.2014.07.033
Molva C, Baysal AH
(2014).
Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice.
-
DOI: 10.1016/j.ijfoodmicro.2015.01.019
Molva C, Baysal AH
(2015).
Effects of pomegranate and pomegranate-apple blend juices on the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells and spores.
-
DOI: 10.18388/abp.2015_1133
Tyfa A, Kunicka-Styczynska A, Zabielska J
(2015).
Evaluation of hydrophobicity and quantitative analysis of biofilm formation by Alicyclobacillus sp.
-
DOI: 10.1016/j.ijbiomac.2018.01.194
Wu H, Teng C, Liu B, Tian H, Wang J
(2018).
Characterization and long term antimicrobial activity of the nisin anchored cellulose films.
-
DOI: 10.1016/j.fm.2019.01.003
Feng X, He C, Jiao L, Liang X, Zhao R, Guo Y
(2019).
Analysis of differential expression proteins reveals the key pathway in response to heat stress in Alicyclobacillus acidoterrestris DSM 3922(T).
-
DOI: 10.3934/microbiol.2017.2.315
Molva C, Baysal AH
(2017).
Modeling growth of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells in the apple juice with nisin and lysozyme.
-
DOI: 10.3389/fnut.2021.700500
Bevilacqua A, Petruzzi L, Speranza B, Campaniello D, Ciuffreda E, Altieri C, Sinigaglia M, Corbo MR
(2021).
Viability, Sublethal Injury, and Release of Cellular Components From Alicyclobacillus acidoterrestris Spores and Cells After the Application of Physical Treatments, Natural Extracts, or Their Components.
-
DOI: 10.1093/g3journal/jkac225
Leonardo IC, Barreto Crespo MT, Gaspar FB
(2022).
Unveiling the complete genome sequence of Alicyclobacillus acidoterrestris DSM 3922T, a taint-producing strain.
-
DOI: 10.1016/j.fm.2022.104158
Bevilacqua A, Speranza B, Petruzzi L, Sinigaglia M, Corbo MR
(2022).
Using regression and Multifactorial Analysis of Variance to assess the effect of ascorbic, citric, and malic acids on spores and activated spores of Alicyclobacillusacidoterrestris.
-
DOI: 10.1016/j.fm.2023.104273
Xu J, Zhao N, Meng X, Zhang T, Li J, Dong H, Wei X, Fan M
(2023).
Contribution of amino acids to Alicyclobacillus acidoterrestris DSM 3922T resistance towards acid stress.
-
DOI: 10.1128/spectrum.00022-23
Xu J, Zhao N, Meng X, Li J, Zhang T, Xu R, Wei X, Fan M
(2023).
Transcriptomic and Metabolomic Profiling Uncovers Response Mechanisms of Alicyclobacillus acidoterrestris DSM 3922(T) to Acid Stress.
-
DOI: 10.1016/s0168-1605(99)00103-8
Silva FM, Gibbs P, Vieira MC, Silva CL
(1999).
Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes.
-
DOI: 10.4315/0362-028x-67.11.2538
Nakauma M, Saito K, Katayama T, Tada M, Todoriki S
(2004).
Radiation-heat synergism for inactivation of Alicyclobacillus acidoterrestris spores in citrus juice.
-
DOI: 10.1016/j.ijfoodmicro.2023.110197
Neggazi I, Colas-Meda P, Vinas I, Garza S, Alegre I
(2023).
Occurrence of Alicyclobacillus acidoterrestris in pasteurized and high hydrostatic pressure-treated fruit juices and isolates' characterization.