Strain sc|0028835


Strain numbers

ATCC 6051 = ATCC 6051-U = BCRC 10255 = CCM 2216 = CCRC 10255 = CCUG 163 = CCUG 163 B = CFBP 4228 = CIP 52.65 = DSM 10 = IAM 12118 = IFO 13719 = IFO 16412 = IMET 10758 = JCM 1465 = LMG 7135 = NBRC 13719 = NBRC 16412 = NCAIM B.01095 = NCCB 32009 = NCCB 53016 = NCCB 70064 = NCDO 1769 = NCFB 1769 = NCIMB 3610 = NCTC 3610 = NRRL B-4219 = NRRL NRS-1315 = NRRL NRS-744 = VKM B-501
This strain is associated as type material for multiple names:

StrainInfo: SI-ID 34732 T

Taxon
Bacillus subtilis subsp. subtilis (not Bacillus subtilisT)
Cultures (59)
LMG 7135 = ATCC 6051 = CCM 2216 = CECT 39 = DSM 10 = IAM 12118 = IFO 12210 = JCM 1465 = NCFB 1769 = NCIMB 3610 = NCTC 3610 = IFO 13719 = NCIB 3610 = IMET 10758 = NCDO 1769 = CCRC 10255 = NCAIM B.01095 = IFO 16412 = VKM B-501 = CIP 5265 = LMD 32.9 = LMD 53.16 = LMD 70.64 = NRRL NRS-1315 = VTT E-70009 = CECT 497 = NRRL NRS-744 = KCTC 3135 = KCTC 3555 = NBRC 13719 = NBRC 16412 = NRRL B-4219 = NCCB 32009 = NCCB 53016 = NCCB 70064 = NBRC 12210 = BCRC 10255 = CFBP 4228 = CCT 0516 = CCT 0480 = CCT 1940 = CCT 2471 = CCT 2576 = CCT 3131 = IMET 10 = ICMP 12486 = NBIMCC 1710 = NBIMCC 2353 = NCIMB 30161 = NCIM 2920 = CDBB 916 = CDBB 39 = ACM 40 = VKM B-758 = CNCTC 5615 = CGMCC 1.3358 = VTT E-97009 = CIP 52.65 = CCUG 163 B
Other Designations (46)
Logan B0014 = USCC 1414 = NRS 1315 = Hankey B12 = IEM BS1866 = CNCTC Bs 18/66 = CCEB 642 = FIRDI 255 = OUT 8352 = BGSC 3A1 = CN 5638 = NRS 744 = strain Marburg = ATCC 6051-U = 168 = ATCC 6051a = Wallerstein Co. Inc. P31K6 = P31K6 = Gordon 744 = Marburg strain = Smith 744 = IEMBs18/66 = VKM501 = DB-1 = Smith 1315 = LMG 7135T QC 11/99 = Wallersterin Co. Inc. P31K6 = N. R. Smith 744 = LMG 7135T QC 4/02 = Smith N.R. 744 = VKM B 919 = Marburg N.R.Smith744 = Smith N.R., 1315 = HNCMB101020 = CCTM La 3675 = AJ 1315 = Conn = CNCM 52.65 = LMG7135T QC 7/04 = DSMZ 10 = 1315 = N.R. Smith 1315 = LMG 7135T QC 2/02 = Marburg = NZRM 143 = 744
Sequences (73)
Associated Publications (144)
  • DOI: 10.1111/j.1365-2672.2008.04034.x
    Rurangwa E, Laranja JL, Van Houdt R, Delaedt Y, Geraylou Z, Van de Wiele T, Van Loo J, Van Craeyveld V, Courtin CM, Delcour JA, Ollevier F (2009). Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures in vitro.
  • Herbold DR, Glaser L (1975). Bacillus subtilis N-acetylmuramic acid L-alanine amidase.
  • DOI: 10.1016/j.saa.2010.08.073
    Khan IM, Ahmad A, Oves M (2010). Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with pi acceptor picric acid.
  • DOI: 10.3109/14756366.2014.976565
    Sumrra SH, Hanif M, Chohan ZH (2015). Design, synthesis and in vitro bactericidal/fungicidal screening of some vanadyl(IV)complexes with mono- and di-substituted ONS donor triazoles.
  • DOI: 10.1038/srep44452
    Piktel E, Pogoda K, Roman M, Niemirowicz K, Tokajuk G, Wroblewska M, Szynaka B, Kwiatek WM, Savage PB, Bucki R (2017). Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis.
  • Oraei M, Razavi SH, Khodaiyan F (2018). Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs.
  • DOI: 10.1186/s12934-018-1011-y
    Liu X, Wang H, Wang B, Pan L (2018). Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system.
  • DOI: 10.1007/s10068-018-0461-7
    Wang H, Huang J, Sun L, Xu F, Zhang W, Zhan J (2018). An efficient process for co-production of gamma-aminobutyric acid and probiotic Bacillus subtilis cells.
  • DOI: 10.3855/jidc.10108
    Abou Fayad A, Itani D, Miari M, Tanelian A, Iweir S, Matar GM (2018). From bugs to drugs: Combating antimicrobial resistance by discovering novel antibiotics.
  • DOI: 10.1186/s13568-020-0954-7
    Tan YN, Lee PP, Chen WN (2020). Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream.
  • DOI: 10.13345/j.cjb.190071
    Cheng H, Chen Y, Zhu Y, Cao R, Xu G, Zhang X, Shi J, Xu Z (2020). [gamma-Polyglutamic acid production in Corynebacterium glutamicum using sugar by one-step fermentation].
  • DOI: 10.3390/microorganisms9020243
    Suzuki A, Suzuki M (2021). Antimicrobial Activity of Lactococcus lactis subsp. lactis Isolated from a Stranded Cuvier's Beaked Whale (Ziphius cavirostris) against Gram-Positive and -Negative Bacteria.
  • DOI: 10.3390/antiox10071119
    Magangana TP, Makunga NP, la Grange C, Stander MA, Fawole OA, Opara UL (2021). Blanching Pre-Treatment Promotes High Yields, Bioactive Compounds, Antioxidants, Enzyme Inactivation and Antibacterial Activity of 'Wonderful' Pomegranate Peel Extracts at Three Different Harvest Maturities.
  • DOI: 10.1007/978-1-0716-2855-3_2
    Rutten A, Wohlleben W, Mitousis L, Musiol-Kroll EM (2023). A Whole-Cell Assay for Detection of Antibacterial Activity in Actinomycete Culture Supernatants.
  • DOI: 10.3390/molecules28062801
    Mali SN, Anand A, Zaki MEA, Al-Hussain SA, Jawarkar RD, Pandey A, Kuznetsov A (2023). Theoretical and Anti-Klebsiella pneumoniae Evaluations of Substituted 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamide and Imidazopyridine Hydrazide Derivatives.
  • DOI: 10.1016/j.jphotobiol.2023.112787
    Kaur S, Dadwal R, Nandanwar H, Soni S (2023). Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis.
  • DOI: 10.1016/j.ultsonch.2024.106765
    Prevete G, Carvalho LG, Del Carmen Razola-Diaz M, Verardo V, Mancini G, Fiore A, Mazzonna M (2024). Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity.
  • DOI: 10.1021/acsomega.3c09741
    Achuoth MP, Mudalungu CM, Ochieng BO, Mokaya HO, Kibet S, Maharaj VJ, Subramanian S, Kelemu S, Tanga CM (2024). Unlocking the Potential of Substrate Quality for the Enhanced Antibacterial Activity of Black Soldier Fly against Pathogens.
  • DOI: 10.1111/1751-7915.14426
    Adilkhanova A, Ormantayeva A, Kaziullayeva A, Olaifa K, Eghtesadi N, Abbas AH, Calvio C, Pham TT, Ajunwa OM, Marsili E (2024). Electrofermentation increases concentration of poly gamma-glutamic acid in Bacillus subtilis biofilms.
  • DOI: 10.1016/j.jinorgbio.2024.112566
    Khan Z, Tanoeyadi S, Jabeen N, Shafique M, Naz SA, Mahmud T (2024). Molecular basis for the increased activity of ZMS-2 serine protease in the presence of metal ions and hydrogen peroxide.
  • DOI: 10.1007/s11356-024-33534-0
    Chu PH, Jenol MA, Phang LY, Ibrahim MF, Purkan P, Hadi S, Abd-Aziz S (2024). Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass.
  • DOI: 10.1007/BF00417847
    Brillinger GU, Heberle W, Weber B, Achenbach H (1978). Metabolic products of microorganisms 167. Cyclopaldic acid from Aspergillus duricaulis. 1. Production, isolation and bioloical properties.
  • Ansorg R, Zappel H, Thomssen R (1975). [Significance of the antibacterial agent assay of urine for bacteriological diagnosis and control of chemotherapy of urinary tract infections (author's transl)].
  • Herbold DR, Glaser L (1975). Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers.
  • DOI: 10.1128/jb.127.2.803-811.1976
    Lindsay B, Glaser L (1976). Characterization of the N-acetylmuramic acid L-alanine amidase from Bacillus subtilis.
  • Vilchez Medina T, Montero Herrero CG, Garcia Curiel A, Lluch Colomer A, Rodriguez Cobacho A, Atienza Fernandez M (1990). [Microbial growth in parenteral nutrition. II. Effects of osmolality].
  • DOI: 10.1128/jb.172.2.701-708.1990
    Zhang JJ, Hu FM, Chen NY, Paulus H (1990). Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168.
  • Vilchez Medina T, Montero Herrero CG, Garcia Curiel A, Atienza Fernandez M (1989). [A microbial growth study in parenteral nutrition].
  • DOI: 10.1111/j.1365-2672.1989.tb02535.x
    Garcia ML, Burgos J, Sanz B, Ordonez JA (1989). Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis.
  • DOI: 10.1073/pnas.69.1.233
    Wise EM Jr, Glickman RS, Teimer E (1972). Teichoic acid hydrolase activity in soil bacteria (Bacillus subtilis-sporulation-phosphodiesterase-polyamines-concanavalin A).
  • DOI: 10.1128/jb.109.2.939-942.1972
    Beebe JL (1972). Transport alterations in a phosphatidylethanolamine-deficient mutant of Bacillus subtilis.
  • DOI: 10.1128/jb.107.3.704-711.1971
    Beebe JL (1971). Isolation and characterization of a phosphatidylethanolamine-deficient mutnt of Bacillus subtilis.
  • DOI: 10.1128/jcm.14.1.113-115.1981
    Franklin ML, Clark WA (1981). Simple, inexpensive, and rapid way to produce Bacillus subtilis spores for the Guthrie bioassay.
  • DOI: 10.1099/13500872-141-9-2219
    Bolotin A, Khazak V, Stoynova N, Ratmanova K, Yomantas Y, Kozlov Y (1995). Identical amino acid sequence of the aroA(G) gene products of Bacillus subtilis 168 and B. subtilis Marburg strain.
  • DOI: 10.1007/s002530051010
    Okamoto H, Fujiwara T, Nakamura E, Katoh T, Iwamoto H, Tsuzuki H (1997). Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051; application to the recovery of bioactive peptides from fusion proteins by sequence-specific digestion.
  • DOI: 10.4315/0362-028x-62.5.474
    Cutter CN (1999). The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces.
  • DOI: 10.1016/s0378-8741(01)00307-5
    Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO (2001). Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity.
  • DOI: 10.4315/0362-028x-65.7.1134
    Serp D, von Stockar U, Marison IW (2002). Immobilized bacterial spores for use as bioindicators in the validation of thermal sterilization processes.
  • DOI: 10.1016/j.jep.2003.12.015
    Okoli AS, Iroegbu CU (2004). Evaluation of extracts of Anthocleista djalonensis, Nauclea latifolia and Uvaria afzalii for activity against bacterial isolates from cases of non-gonococcal urethritis.
  • DOI: 10.1159/000094866
    Moradali MF, Mostafavi H, Hejaroude GA, Tehrani AS, Abbasi M, Ghods S (2006). Investigation of potential antibacterial properties of methanol extracts from fungus Ganoderma applanatum.
  • DOI: 10.1111/j.1365-2672.2006.03042.x
    Cenci G, Trotta F, Caldini G (2006). Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii.
  • DOI: 10.1007/s00253-007-0956-2
    Bourgois TM, Van Craeyveld V, Van Campenhout S, Courtin CM, Delcour JA, Robben J, Volckaert G (2007). Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase.
  • DOI: 10.1128/AEM.01715-07
    Majcher MR, Bernard KA, Sattar SA (2007). Identification by quantitative carrier test of surrogate spore-forming bacteria to assess sporicidal chemicals for use against Bacillus anthracis.
  • DOI: 10.1099/mic.0.2007/011783-0
    Kobayashi K, Kuwana R, Takamatsu H (2008). kinA mRNA is missing a stop codon in the undomesticated Bacillus subtilis strain ATCC 6051.
  • DOI: 10.1139/w07-113
    Lupa B, Lyon D, Shaw LN, Sieprawska-Lupa M, Wiegel J (2008). Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis.
  • DOI: 10.1111/j.1365-2958.2008.06369.x
    Kobayashi K (2008). SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis.
  • DOI: 10.1128/JB.00722-08
    Zeigler DR, Pragai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008). The origins of 168, W23, and other Bacillus subtilis legacy strains.
  • DOI: 10.1128/AEM.00574-10
    Xiang SR, Cook M, Saucier S, Gillespie P, Socha R, Scroggins R, Beaudette LA (2010). Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms.
  • DOI: 10.3390/ijms12106385
    Nwodo UU, Obiiyeke GE, Chigor VN, Okoh AI (2011). Assessment of Tamarindus indica extracts for antibacterial activity.
  • DOI: 10.1016/j.jbiotec.2012.06.034
    Kabisch J, Thurmer A, Hubel T, Popper L, Daniel R, Schweder T (2012). Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host.
  • DOI: 10.1039/c2ob26988k
    Zhang H, Xiao X, Conte MM, Khalil Z, Capon RJ (2012). Spiralisones A-D: acylphloroglucinol hemiketals from an Australian marine brown alga, Zonaria spiralis.
  • DOI: 10.1016/j.micres.2013.07.002
    Kavita K, Singh VK, Jha B (2013). 24-Branched Delta5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria.
  • DOI: 10.1186/s13568-015-0109-4
    Friedline A, Zachariah M, Middaugh A, Heiser M, Khanna N, Vaishampayan P, Rice CV (2015). Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide.
  • DOI: 10.1186/s12866-015-0457-x
    Bucki R, Niemirowicz K, Wnorowska U, Watek M, Byfield FJ, Cruz K, Wroblewska M, Janmey PA (2015). Polyelectrolyte-mediated increase of biofilm mass formation.
  • DOI: 10.1002/mnfr.201500182
    Liu Y, Eichler J, Pischetsrieder M (2015). Virtual screening of a milk peptide database for the identification of food-derived antimicrobial peptides.
  • DOI: 10.1111/jam.12963
    Martin DJ, Wesgate RL, Denyer SP, McDonnell G, Maillard JY (2015). Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance.
  • Njume C, Gqaza BM, Rozani C, Goduka NI (2016). Studies on bioactivity and secondary metabolites of crude extracts of Bidens pilosa L. (Asteraceae): A medicinal plant used in the Transkei region of South Africa.
  • DOI: 10.1021/acs.jafc.7b03092
    Ruiz-Aceituno L, Sanz ML, de Las Rivas B, Munoz R, Kolida S, Jimeno ML, Moreno FJ (2017). Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from Bacillus subtilis CECT 39.
  • DOI: 10.1371/journal.pone.0139035
    Corzo-Martinez M, Luscher A, de Las Rivas B, Munoz R, Moreno FJ (2015). Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose.
  • DOI: 10.1016/j.foodres.2015.09.035
    Diez-Municio M, Gonzalez-Santana C, de Las Rivas B, Jimeno ML, Munoz R, Moreno FJ, Herrero M (2015). Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases.
  • DOI: 10.1099/ijsem.0.001759
    Zhao B, Lu W, Zhang S, Liu K, Yan Y, Li J (2017). Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake.
  • DOI: 10.3390/molecules22071202
    Kuephadungphan W, Helaly SE, Daengrot C, Phongpaichit S, Luangsa-Ard JJ, Rukachaisirikul V, Stadler M (2017). Akanthopyrones A-D, alpha-Pyrones Bearing a 4-O-Methyl-beta-d-glucopyranose Moiety from the Spider-Associated Ascomycete Akanthomyces novoguineensis.
  • DOI: 10.3390/md18040227
    Sabdaningsih A, Liu Y, Mettal U, Heep J, Riyanti, Wang L, Cristianawati O, Nuryadi H, Triandala Sibero M, Marner M, Radjasa OK, Sabdono A, Trianto A, Schaberle TF (2020). A New Citrinin Derivative from the Indonesian Marine Sponge-Associated Fungus Penicillium citrinum.
  • DOI: 10.1186/s12934-020-01468-0
    Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R (2020). Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
  • DOI: 10.1128/MRA.00158-21
    Lilge L, Hertel R, Morabbi Heravi K, Henkel M, Commichau FM, Hausmann R (2021). Draft Genome Sequence of the Type Strain Bacillus subtilis subsp. subtilis DSM10.
  • DOI: 10.3390/antibiotics10030261
    Primahana G, Risdian C, Mozef T, Wink J, Surup F, Stadler M (2021). Amycolatomycins A and B, Cyclic Hexapeptides Isolated from an Amycolatopsis sp. 195334CR.
  • DOI: 10.1002/mbo3.1241
    Lilge L, Vahidinasab M, Adiek I, Becker P, Kuppusamy Nesamani C, Treinen C, Hoffmann M, Morabbi Heravi K, Henkel M, Hausmann R (2021). Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains.
  • DOI: 10.1186/s13568-021-01306-5
    Treinen C, Magosch O, Hoffmann M, Klausmann P, Wurtz B, Pfannstiel J, Morabbi Heravi K, Lilge L, Hausmann R, Henkel M (2021). Modeling the time course of ComX: towards molecular process control for Bacillus wild-type cultivations.
  • DOI: 10.3390/md20100620
    Wang L, Marner M, Mettal U, Liu Y, Schaberle TF (2022). Seven New Alkaloids Isolated from Marine Flavobacterium Tenacibaculum discolor sv11.
  • DOI: 10.1002/cbf.3776
    Czinkoczky R, Sakiyo J, Eszterbauer E, Nemeth A (2023). Prediction of surfactin fermentation with Bacillus subtilis DSM10 by response surface methodology optimized artificial neural network.
  • DOI: 10.1007/s13205-023-03517-y
    Li K, Jia J, Xu Q, Wu N (2023). Whole-genome sequencing and phylogenomic analyses of a novel zearalenone-degrading Bacillus subtilis B72.
  • DOI: 10.3390/microorganisms11030707
    Sakiyo JJ, Nemeth A (2023). The Potential of Bacilli-Derived Biosurfactants as an Additive for Biocontrol against Alternaria alternata Plant Pathogenic Fungi.
  • DOI: 10.1093/lambio/ovad080
    Tanvir R, Sajid I, Rehman Y, Hasnain S (2023). Fatty acid based antimicrobials from Streptomyces sp. SORS-24, an endophyte isolated from Sonchus oleraceus.
  • DOI: 10.1128/AEM.69.7.3719-3727.2003
    Yan L, Boyd KG, Adams DR, Burgess JG (2003). Biofilm-specific cross-species induction of antimicrobial compounds in bacilli.
  • DOI: 10.1016/j.jbiotec.2011.01.006
    Ruckert C, Blom J, Chen X, Reva O, Borriss R (2011). Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42.
  • DOI: 10.1128/AEM.02341-10
    Xue J, Ahring BK (2011). Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis.
  • DOI: 10.1099/ijs.0.034173-0
    Didari M, Amoozegar MA, Bagheri M, Schumann P, Sproer C, Sanchez-Porro C, Ventosa A (2012). Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov.
  • DOI: 10.1007/s00425-013-2023-9
    Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A, Plassard C, Drevon JJ (2014). Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate.
  • DOI: 10.1007/s00253-014-6010-2
    Willenbacher J, Zwick M, Mohr T, Schmid F, Syldatk C, Hausmann R (2014). Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation.
  • DOI: 10.1080/21655979.2015.1018493
    O'Mahony MM, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson AD (2015). Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome.
  • DOI: 10.1186/s13568-015-0107-6
    Willenbacher J, Rau JT, Rogalla J, Syldatk C, Hausmann R (2015). Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10(T).
  • DOI: 10.1186/s13568-015-0145-0
    Willenbacher J, Yeremchuk W, Mohr T, Syldatk C, Hausmann R (2015). Enhancement of Surfactin yield by improving the medium composition and fermentation process.
  • DOI: 10.1099/ijsem.0.000572
    Vishnuvardhan Reddy S, Thirumala M, Sasikala C, Venkata Ramana C (2015). Salibacterium halotolerans gen. nov., sp. nov., a bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov.
  • DOI: 10.1016/j.micres.2016.01.003
    Tanvir R, Sajid I, Hasnain S, Kulik A, Grond S (2016). Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.
  • DOI: 10.1016/j.jbiotec.2016.03.002
    Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, Hausmann R (2016). Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production.
  • DOI: 10.1021/acs.jnatprod.5b00950
    Mudalungu CM, Richter C, Wittstein K, Abdalla MA, Matasyoh JC, Stadler M, Sussmuth RD (2016). Laxitextines A and B, Cyathane Xylosides from the Tropical Fungus Laxitextum incrustatum.
  • DOI: 10.3390/ijms23179732
    Thiruvengadam R, Gandhi K, Vaithiyanathan S, Sankarasubramanian H, Loganathan K, Lingan R, Rajagopalan VR, Muthurajan R, Ebenezer Iyadurai J, Kuppusami P (2022). Complete Genome Sequence Analysis of Bacillus subtilis Bbv57, a Promising Biocontrol Agent against Phytopathogens.
  • DOI: 10.3390/biology12091195
    Huang M, Guo J, Jia Y, Liao C, He L, Li J, Wei Y, Chen S, Chen J, Shang K, Guo R, Ding K, Yu Z (2023). A Bacillus subtilis Strain ZJ20 with AFB1 Detoxification Ability: A Comprehensive Analysis.
  • DOI: 10.1016/s0168-1605(02)00311-2
    Hosoi T, Hirose R, Saegusa S, Ametani A, Kiuchi K, Kaminogawa S (2003). Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto).
  • DOI: 10.1080/09168451.2014.918485
    Roy U, Islam MR, Nagao J, Iida H, Mahin AA, Li M, Zendo T, Nakayama J, Sonomoto K (2014). Bactericidal activity of nukacin ISK-1: an alternative mode of action.
  • DOI: 10.1128/jb.136.3.886-899.1978
    Anderson AJ, Green RS, Sturman AJ, Archibald AR (1978). Cell wall assembly in Bacillus subtilis: location of wall material incorporated during pulsed release of phosphate limitation, its accessibility to bacteriophages and concanavalin A, and its susceptibility to turnover.
  • DOI: 10.1016/0378-1119(85)90233-1
    Gottlieb P, LaFauci G, Rudner R (1985). Alterations in the number of rRNA operons within the Bacillus subtilis genome.
  • Krzywicka H, Jakimiak B, Zarzycka E (1996). [The effect of growth media on recovery of test microorganisms after exposure to saturated steam under pressure].
  • DOI: 10.1016/j.carbpol.2015.05.046
    Iqbal HM, Kyazze G, Locke IC, Tron T, Keshavarz T (2015). Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviours.
  • DOI: 10.1128/genomeA.00364-17
    Nye TM, Schroeder JW, Kearns DB, Simmons LA (2017). Complete Genome Sequence of Undomesticated Bacillus subtilis Strain NCIB 3610.
  • DOI: 10.1186/s13568-017-0447-5
    Muth C, Buchholz M, Schmidt C, Volland S, Meinhardt F (2017). Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis.
  • DOI: 10.1038/s42003-018-0136-1
    Lyons NA, Kolter R (2018). A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production.
  • DOI: 10.3389/fcimb.2019.00183
    Gu HJ, Sun QL, Luo JC, Zhang J, Sun L (2019). A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent.
  • DOI: 10.1038/s41522-019-0111-8
    Falcon Garcia C, Kretschmer M, Lozano-Andrade CN, Schonleitner M, Dragos A, Kovacs AT, Lieleg O (2020). Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms.
  • DOI: 10.1139/cjm-2020-0174
    Charron-Lamoureux V, Therien M, Konk A, Beauregard PB (2020). Bacillus subtilis and Bacillus velezensis population dynamics and quantification of spores after inoculation on ornamental plants.
  • DOI: 10.1128/JB.00290-20
    Burton AT, Kearns DB (2020). The Large pBS32/pLS32 Plasmid of Ancestral Bacillus subtilis.
  • DOI: 10.1080/15476286.2020.1795408
    Thuring M, Ganapathy S, Schluter MAC, Lechner M, Hartmann RK (2020). 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype.
  • DOI: 10.1111/mmi.14601
    Nye TM, McLean EK, Burrage AM, Dennison DD, Kearns DB, Simmons LA (2020). RnhP is a plasmid-borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610.
  • DOI: 10.1007/s12602-020-09706-y
    Karagiota A, Tsitsopoulou H, Tasakis RN, Zoumpourtikoudi V, Touraki M (2020). Characterization and Quantitative Determination of a Diverse Group of Bacillus subtilis subsp. subtilis NCIB 3610 Antibacterial Peptides.
  • DOI: 10.1016/j.bioflm.2020.100021
    Therien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maroti G, Kovacs AT, Beauregard PB (2020). Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis.
  • DOI: 10.1134/S0006297921010028
    Hederstedt L (2021). Molecular Biology of Bacillus subtilis Cytochromes anno 2020.
  • DOI: 10.1002/mbo3.1212
    Nordgaard M, Mortensen RMR, Kirk NK, Gallegos-Monterrosa R, Kovacs AT (2021). Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization.
  • DOI: 10.1371/journal.pgen.1009682
    Kobayashi K (2021). Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms.
  • DOI: 10.1099/mic.0.001082
    Kalamara M, Abbott JC, MacPhee CE, Stanley-Wall NR (2021). Biofilm hydrophobicity in environmental isolates of Bacillus subtilis.
  • DOI: 10.1039/c9ra01955c
    Klotz M, Kretschmer M, Goetz A, Ezendam S, Lieleg O, Opitz M (2019). Importance of the biofilm matrix for the erosion stability of Bacillus subtilis NCIB 3610 biofilms.
  • DOI: 10.1128/mbio.01388-22
    Arjes HA, Gui H, Porter R, Atolia E, Peters JM, Gross C, Kearns DB, Huang KC (2022). Fatty Acid Synthesis Knockdown Promotes Biofilm Wrinkling and Inhibits Sporulation in Bacillus subtilis.
  • DOI: 10.1016/j.bioflm.2022.100082
    Porter M, Davidson FA, MacPhee CE, Stanley-Wall NR (2022). Systematic microscopical analysis reveals obligate synergy between extracellular matrix components during Bacillus subtilis colony biofilm development.
  • DOI: 10.1038/s41522-022-00361-5
    Morris RJ, Stevenson D, Sukhodub T, Stanley-Wall NR, MacPhee CE (2022). Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-gamma-glutamic acid production.
  • DOI: 10.2323/jgam.2023.02.002
    Kondo T, Sibponkrung S, Hironao KY, Tittabutr P, Boonkerd N, Ishikawa S, Ashida H, Teaumroong N, Yoshida KI (2023). Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones.
  • DOI: 10.1099/mic.0.001344
    Kalamara M, Abbott J, Sukhodub T, MacPhee C, Stanley-Wall NR (2023). The putative role of the epipeptide EpeX in Bacillus subtilis intra-species competition.
  • DOI: 10.1128/msystems.00803-23
    Velickovic D, Zemaitis KJ, Bhattacharjee A, Anderton CR (2023). Mass spectrometry imaging of natural carbonyl products directly from agar-based microbial interactions using 4-APEBA derivatization.
  • DOI: 10.1016/j.envres.2024.118969
    Savadiya B, Pandey G, Misra SK (2024). Remediation of pharmacophoric laboratory waste by using biodegradable carbon nanoparticles of bacterial biofilm origin.
  • DOI: 10.1111/mmi.15288
    Rosazza T, Earl C, Eigentler L, Davidson FA, Stanley-Wall NR (2024). Reciprocal sharing of extracellular proteases and extracellular matrix molecules facilitates Bacillus subtilis biofilm formation.
  • DOI: 10.1128/jb.120.3.999-1003.1974
    Minnikin DE, Abdolrahimzadeh H (1974). Effect of pH on the proportions of polar lipids, in chemostat cultures of Bacillus subtilis.
  • DOI: 10.1128/jb.155.2.776-792.1983
    Harrington CR, Baddiley J (1983). Peptidoglycan synthesis by partly autolyzed cells of Bacillus subtilis W23.
  • DOI: 10.1128/JB.186.12.3970-3979.2004
    Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis.
  • DOI: 10.1128/JB.00904-07
    Mascher T, Hachmann AB, Helmann JD (2007). Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors.
  • DOI: 10.1371/journal.pone.0009724
    Nijland R, Burgess JG, Errington J, Veening JW (2010). Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence.
  • DOI: 10.1128/JB.01542-10
    McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R (2011). Tracing the domestication of a biofilm-forming bacterium.
  • DOI: 10.1128/JB.02030-12
    Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013). A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence.
  • DOI: 10.1371/journal.pone.0062044
    Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I (2013). Exopolymer diversity and the role of levan in Bacillus subtilis biofilms.
  • DOI: 10.1128/JB.00696-13
    Konkol MA, Blair KM, Kearns DB (2013). Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis.
  • DOI: 10.1371/journal.pone.0079488
    Pelchovich G, Omer-Bendori S, Gophna U (2013). Menaquinone and iron are essential for complex colony development in Bacillus subtilis.
  • DOI: 10.1099/ijs.0.058768-0
    Hong SW, Kwon SW, Kim SJ, Kim SY, Kim JJ, Lee JS, Oh MH, Kim AJ, Chung KS (2014). Bacillus oryzaecorticis sp. nov., a moderately halophilic bacterium isolated from rice husks.
  • DOI: 10.1128/AEM.01621-14
    Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR (2014). Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
  • DOI: 10.1128/AEM.01600-14
    Kesel S, Mader A, Seeberger PH, Lieleg O, Opitz M (2014). Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces.
  • DOI: 10.1128/AEM.02473-14
    Sanchez-Vizuete P, Le Coq D, Bridier A, Herry JM, Aymerich S, Briandet R (2014). Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities.
  • DOI: 10.1128/JB.02382-14
    Omer Bendori S, Pollak S, Hizi D, Eldar A (2014). The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP.
  • DOI: 10.1128/AEM.03957-15
    Kesel S, Grumbein S, Gumperlein I, Tallawi M, Marel AK, Lieleg O, Opitz M (2016). Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.
  • DOI: 10.1021/acs.jproteome.6b00127
    Si T, Li B, Zhang K, Xu Y, Zhao H, Sweedler JV (2016). Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.
  • DOI: 10.1099/mic.0.000371
    Gallegos-Monterrosa R, Mhatre E, Kovacs AT (2016). Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
  • DOI: 10.1134/s0006297909050095
    Shashkov AS, Potekhina NV, Senchenkova SN, Kudryashova EB (2009). Anionic polymers of the cell wall of Bacillus subtilis subsp. subtilis VKM B-501(T).
  • DOI: 10.1016/s0960-8524(02)00094-9
    Kurbanoglu EB, Algur OF (2002). Single-cell protein production from ram horn hydrolysate by bacteria.
  • DOI: 10.4014/jmb,1712.12006
    Ahn S, Jun S, Ro HJ, Kim JH, Kim S (2018). Complete genome of Bacillussubtilis subsp. subtilis KCTC 3135(T) and variation in cell wall genes of B. subtilis strains.
  • DOI: 10.4014/jmb.1712.12006
    Ahn S, Jun S, Ro HJ, Kim JH, Kim S (2018). Complete Genome of Bacillus subtilis subsp. subtilis KCTC 3135(T) and Variation in Cell Wall Genes of B. subtilis Strains.
  • DOI: 10.1128/MRA.00904-18
    De Leon MP, Park AY, Montecillo AD, Siringan MAT, Rosana ARR, Kim SG (2018). Near-Complete Genome Sequences of Streptomyces sp. Strains AC1-42T and AC1-42W, Isolated from Bat Guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.
  • DOI: 10.1590/S1517-83822011000100045
    Pereira de Quadros C, Cristina Teixeira Duarte M, Maria Pastore G (2011). Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum.
  • DOI: 10.3390/ph17040506
    Dolashka P, Marinova K, Petrov P, Petrova V, Ranguelov B, Atanasova-Vladimirova S, Kaynarov D, Stoycheva I, Pisareva E, Tomova A, Kosateva A, Velkova L, Dolashki A (2024). Development of CuO Nanoparticles from the Mucus of Garden Snail Cornu aspersum as New Antimicrobial Agents.
  • DOI: 10.3389/fmicb.2017.02420
    Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B (2017). Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Genomics

Genomes (1)

Metadata

Cannonical URL
https://seqco.de/s:28835
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license