-
DOI: 10.1099/00221287-137-2-369
Schroeder CJ, Robert C, Lenzen G, McKay LL, Mercenier A
(1991).
Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus beta-galactosidase sequences.
-
DOI: 10.3168/jds.S0022-0302(87)80036-X
Teraguchi S, Ono J, Kiyosawa I, Okonogi S
(1987).
Oxygen uptake activity and aerobic metabolism of Streptococcus thermophilus STH450.
-
DOI: 10.1128/aem.63.11.4593-4596.1997
Satoh E, Ito Y, Sasaki Y, Sasaki T
(1997).
Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains.
-
Lysenko AM, Botina SG, Ganina VI, Sukhodolets VV
(2001).
[Divergence in the level of DNA hybridization and formation of sibling species in the lactic acid bacteria Streptococcus thermophilus].
-
DOI: 10.1136/gut.52.7.988
Resta-Lenert S, Barrett KE
(2003).
Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC).
-
DOI: 10.1128/AEM.71.3.1364-1372.2005
Cochu A, Roy D, Vaillancourt K, Lemay JD, Casabon I, Frenette M, Moineau S, Vadeboncoeur C
(2005).
The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P).
-
Botina SG, Trenina MA, Tsygankov IuD, Sukhodolets VV
(2007).
[Comparison of genotypic and biochemical characteristics of Streptococcus thermophilus strains isolated from sour milk products].
-
DOI: 10.1111/j.1740-0929.2009.00680.x
Shimosato T, Tohno M, Sato T, Nishimura J, Kawai Y, Saito T, Kitazawa H
(2009).
Identification of a potent immunostimulatory oligodeoxynucleotide from Streptococcus thermophilus lacZ.
-
DOI: 10.1155/2011/378417
Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S
(2011).
Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells.
-
DOI: 10.1271/bbb.110646
Miyauchi E, Morita M, Rossi M, Morita H, Suzuki T, Tanabe S
(2012).
Effect of D-alanine in teichoic acid from the Streptococcus thermophilus cell wall on the barrier-protection of intestinal epithelial cells.
-
DOI: 10.1186/s12944-015-0019-0
Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y
(2015).
Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects.
-
DOI: 10.4315/0362-028X-54.7.537
Sinha RP
(1991).
Effect of Carbohydrate on the Viability of Streptococcus thermophilus.
-
DOI: 10.3390/microorganisms8050733
Tenea GN, Suarez J
(2020).
Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture.
-
DOI: 10.1007/s00203-020-02156-8
Cho H, Park KE, Kim KS
(2021).
Genome analysis of Streptococcus salivarius subsp. thermophilus type strain ATCC 19258 and its comparison to equivalent strain NCTC 12958.
-
DOI: 10.1007/s00203-021-02313-7
Karadeniz DG, Kaskatepe B, Kiymaci ME, Tok KC, Gumustas M, Karaaslan C
(2021).
Microbial exopolysaccharide production of Streptococcus thermophilus and its antiquorum sensing activity.
-
DOI: 10.3390/ijms24054693
Choi SM, Lin H, Xie W, Chu IK
(2023).
Study of Potential Synergistic Effect of Probiotic Formulas on Acrylamide Reduction.
-
DOI: 10.1099/ijsem.0.006442
Nguyen HV, Trinh ATV, Bui LNH, Hoang ATL, Tran QTL, Trinh TT
(2024).
Streptococcus raffinosi sp. nov., isolated from human breast milk samples.
-
DOI: 10.1046/j.1365-2672.2003.02148.x
Mora D, Maguin E, Masiero M, Parini C, Ricci G, Manachini PL, Daffonchio D
(2004).
Characterization of urease genes cluster of Streptococcus thermophilus.
-
DOI: 10.1016/j.resmic.2005.04.005
Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL
(2005).
Urease biogenesis in Streptococcus thermophilus.
-
DOI: 10.1111/j.1365-2672.2009.04213.x
Arioli S, Monnet C, Guglielmetti S, Mora D
(2009).
Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk.
-
DOI: 10.1099/mic.0.024737-0
Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D
(2009).
The relevance of carbon dioxide metabolism in Streptococcus thermophilus.
-
DOI: 10.3389/fmicb.2014.00098
Ali Y, Koberg S, Hessner S, Sun X, Rabe B, Back A, Neve H, Heller KJ
(2014).
Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type.
-
DOI: 10.1111/1574-6968.12449
Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D
(2014).
Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus.
-
DOI: 10.3389/fmicb.2018.02719
Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D
(2018).
Role of Temperate Bacteriophage varphi20617 on Streptococcus thermophilus DSM 20617(T) Autolysis and Biology.
-
DOI: 10.1016/j.ijfoodmicro.2024.110684
Arioli S, Mangieri N, Zanchetta Y, Russo P, Mora D
(2024).
Substitution of Asp29 with Asn29 in the metallochaperone UreE of Streptococcus thermophilus DSM 20617(T) increases the urease activity and anticipates urea hydrolysis during milk fermentation.
-
DOI: 10.1128/AEM.66.12.5360-5367.2000
Deutsch SM, Molle D, Gagnaire V, Piot M, Atlan D, Lortal S
(2000).
Hydrolysis of sequenced beta-casein peptides provides new insight into peptidase activity from thermophilic lactic acid bacteria and highlights intrinsic resistance of phosphopeptides.