Strain sc|0034317


Strain numbers

ATCC 19258 = CCUG 21957 = CIP 102303 = DSM 20617 = LMG 6896 = NBIMCC 3916 = NCDO 573 = NCFB 573 = NCIB 8510 = NCIMB 8510
This strain is associated as type material for multiple names:

StrainInfo: SI-ID 92381 T

Taxon
Streptococcus thermophilus (not Streptococcus salivarius subsp. thermophilus)
Sample
Pasteurized milk
Cultures (20)
LMG 6896 = ATCC 19258 = CCUG 21957 = DSM 20617 = LMG 13102 = NCFB 573 = NCIMB 8510 = NCDO 573 = NCIB 8510 = CIP 102303 = CECT986 = CCRC 13869 = KCTC 3658 = NCCB 97162 = LMD 97.162 = BCRC 13869 = NBIMCC 3916 = CNCTC 6717 = VTT E-96665 = JCM 17834
Other Designations (18)
WDCM 00134 = USCC 2083 = CCTM 3104 = strain B or R = B or R = LMG 6896QC3/01 = B of R ATCC19258 = CCTM La 3104 = LMG 6896T QC06/04 = CNCTC Str 28/89 = PRSF-S001 = Shattock strain B or R = LMG 13102QC2/02 = CNCTC 28/89 = LMG 6896T QC 10/96 = DSMZ 20617 = B of R = NCTC 12958
Sequences (38)
Associated Publications (26)
  • DOI: 10.1099/00221287-137-2-369
    Schroeder CJ, Robert C, Lenzen G, McKay LL, Mercenier A (1991). Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus beta-galactosidase sequences.
  • DOI: 10.3168/jds.S0022-0302(87)80036-X
    Teraguchi S, Ono J, Kiyosawa I, Okonogi S (1987). Oxygen uptake activity and aerobic metabolism of Streptococcus thermophilus STH450.
  • DOI: 10.1128/aem.63.11.4593-4596.1997
    Satoh E, Ito Y, Sasaki Y, Sasaki T (1997). Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains.
  • Lysenko AM, Botina SG, Ganina VI, Sukhodolets VV (2001). [Divergence in the level of DNA hybridization and formation of sibling species in the lactic acid bacteria Streptococcus thermophilus].
  • DOI: 10.1136/gut.52.7.988
    Resta-Lenert S, Barrett KE (2003). Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC).
  • DOI: 10.1128/AEM.71.3.1364-1372.2005
    Cochu A, Roy D, Vaillancourt K, Lemay JD, Casabon I, Frenette M, Moineau S, Vadeboncoeur C (2005). The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P).
  • Botina SG, Trenina MA, Tsygankov IuD, Sukhodolets VV (2007). [Comparison of genotypic and biochemical characteristics of Streptococcus thermophilus strains isolated from sour milk products].
  • DOI: 10.1111/j.1740-0929.2009.00680.x
    Shimosato T, Tohno M, Sato T, Nishimura J, Kawai Y, Saito T, Kitazawa H (2009). Identification of a potent immunostimulatory oligodeoxynucleotide from Streptococcus thermophilus lacZ.
  • DOI: 10.1155/2011/378417
    Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S (2011). Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells.
  • DOI: 10.1271/bbb.110646
    Miyauchi E, Morita M, Rossi M, Morita H, Suzuki T, Tanabe S (2012). Effect of D-alanine in teichoic acid from the Streptococcus thermophilus cell wall on the barrier-protection of intestinal epithelial cells.
  • DOI: 10.1186/s12944-015-0019-0
    Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y (2015). Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects.
  • DOI: 10.4315/0362-028X-54.7.537
    Sinha RP (1991). Effect of Carbohydrate on the Viability of Streptococcus thermophilus.
  • DOI: 10.3390/microorganisms8050733
    Tenea GN, Suarez J (2020). Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture.
  • DOI: 10.1007/s00203-020-02156-8
    Cho H, Park KE, Kim KS (2021). Genome analysis of Streptococcus salivarius subsp. thermophilus type strain ATCC 19258 and its comparison to equivalent strain NCTC 12958.
  • DOI: 10.1007/s00203-021-02313-7
    Karadeniz DG, Kaskatepe B, Kiymaci ME, Tok KC, Gumustas M, Karaaslan C (2021). Microbial exopolysaccharide production of Streptococcus thermophilus and its antiquorum sensing activity.
  • DOI: 10.3390/ijms24054693
    Choi SM, Lin H, Xie W, Chu IK (2023). Study of Potential Synergistic Effect of Probiotic Formulas on Acrylamide Reduction.
  • DOI: 10.1099/ijsem.0.006442
    Nguyen HV, Trinh ATV, Bui LNH, Hoang ATL, Tran QTL, Trinh TT (2024). Streptococcus raffinosi sp. nov., isolated from human breast milk samples.
  • DOI: 10.1046/j.1365-2672.2003.02148.x
    Mora D, Maguin E, Masiero M, Parini C, Ricci G, Manachini PL, Daffonchio D (2004). Characterization of urease genes cluster of Streptococcus thermophilus.
  • DOI: 10.1016/j.resmic.2005.04.005
    Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL (2005). Urease biogenesis in Streptococcus thermophilus.
  • DOI: 10.1111/j.1365-2672.2009.04213.x
    Arioli S, Monnet C, Guglielmetti S, Mora D (2009). Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk.
  • DOI: 10.1099/mic.0.024737-0
    Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D (2009). The relevance of carbon dioxide metabolism in Streptococcus thermophilus.
  • DOI: 10.3389/fmicb.2014.00098
    Ali Y, Koberg S, Hessner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014). Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type.
  • DOI: 10.1111/1574-6968.12449
    Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D (2014). Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus.
  • DOI: 10.3389/fmicb.2018.02719
    Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D (2018). Role of Temperate Bacteriophage varphi20617 on Streptococcus thermophilus DSM 20617(T) Autolysis and Biology.
  • DOI: 10.1016/j.ijfoodmicro.2024.110684
    Arioli S, Mangieri N, Zanchetta Y, Russo P, Mora D (2024). Substitution of Asp29 with Asn29 in the metallochaperone UreE of Streptococcus thermophilus DSM 20617(T) increases the urease activity and anticipates urea hydrolysis during milk fermentation.
  • DOI: 10.1128/AEM.66.12.5360-5367.2000
    Deutsch SM, Molle D, Gagnaire V, Piot M, Atlan D, Lortal S (2000). Hydrolysis of sequenced beta-casein peptides provides new insight into peptidase activity from thermophilic lactic acid bacteria and highlights intrinsic resistance of phosphopeptides.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:34317
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license