-
DOI: 10.1016/j.syapm.2022.126389
Tolieng V, Tanaka N, Shiwa Y, Thitiprasert S, Kanchanasin P, Phongsopitanun W, Booncharoen A, Thongchul N, Tanasupawat S
(2022).
Weizmannia acidilactici sp. nov., a lactic acid producing bacterium isolated from soils.
-
DOI: 10.1111/j.1432-1033.1986.tb09723.x
Suzuki Y, Tomura Y
(1986).
Purification and characterization of Bacillus coagulans oligo-1,6-glucosidase.
-
DOI: 10.1271/bbb.62.1093
Kashiwabara S, Matsuki Y, Kishimoto T, Suzuki Y
(1998).
Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
-
DOI: 10.1016/j.syapm.2005.03.006
le Roes M, Meyers PR
(2005).
Streptomyces pharetrae sp. nov., isolated from soil from the semi-arid Karoo region.
-
DOI: 10.1128/AEM.72.5.3228-3235.2006
Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT
(2006).
Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid.
-
DOI: 10.1111/j.1365-2672.2008.04105.x
Riazi S, Wirawan RE, Badmaev V, Chikindas ML
(2009).
Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050.
-
DOI: 10.1099/ijs.0.003913-0
Jung MY, Kim JS, Chang YH
(2009).
Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid.
-
DOI: 10.1111/j.1365-2672.2012.05376.x
Riazi S, Dover SE, Chikindas ML
(2012).
Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050.
-
DOI: 10.4315/0362-028X.JFP-11-490
Peng J, Mah JH, Somavat R, Mohamed H, Sastry S, Tang J
(2012).
Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.
-
DOI: 10.1007/s00253-016-7644-z
Chen Y, Dong F, Wang Y
(2016).
Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.
-
DOI: 10.1016/j.fsi.2019.02.029
Amoah K, Huang QC, Tan BP, Zhang S, Chi SY, Yang QH, Liu HY, Dong XH
(2019).
Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei.
-
DOI: 10.1016/j.ijfoodmicro.2020.108523
Saroj DB, Gupta AK
(2020).
Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application.
-
DOI: 10.1016/j.biortech.2021.125880
Tong KTX, Tan IS, Foo HCY, Tiong ACY, Lam MK, Lee KT
(2021).
Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract.
-
DOI: 10.1038/s41598-022-25688-z
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E
(2022).
In vitro assessment of probiotic attributes for strains contained in commercial formulations.
-
DOI: 10.3389/fmicb.2023.1124144
Calvigioni M, Bertolini A, Codini S, Mazzantini D, Panattoni A, Massimino M, Celandroni F, Zucchi R, Saba A, Ghelardi E
(2023).
HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains.
-
DOI: 10.1016/j.biortech.2024.131082
Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK
(2024).
Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production.
-
DOI: 10.1016/j.fct.2006.05.019
Lucas R, Grande MA, Abriouel H, Maqueda M, Ben Omar N, Valdivia E, Martinez-Canamero M, Galvez A
(2006).
Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods.
-
DOI: 10.1016/j.jhazmat.2007.09.027
Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T
(2007).
Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study.
-
DOI: 10.1016/j.biortech.2015.04.118
Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S
(2015).
Hemp hurds biorefining: A path to green L-(+)-lactic acid production.
-
DOI: 10.1038/srep37916
Sun L, Zhang C, Lyu P, Wang Y, Wang L, Yu B
(2016).
Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.
-
DOI: 10.1186/s12934-017-0827-1
Zhang C, Zhou C, Assavasirijinda N, Yu B, Wang L, Ma Y
(2017).
Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.
-
DOI: 10.1186/s13068-018-1323-5
Zheng Z, Jiang T, Zou L, Ouyang S, Zhou J, Lin X, He Q, Wang L, Yu B, Xu H, Ouyang J
(2018).
Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons.
-
DOI: 10.1128/AEM.00672-19
Wang Y, Zhang C, Liu G, Ju J, Yu B, Wang L
(2019).
Elucidating the Role and Regulation of a Lactate Permease as Lactate Transporter in Bacillus coagulans DSM1.
-
DOI: 10.3390/foods9121814
Bevilacqua A, Petruzzi L, Sinigaglia M, Speranza B, Campaniello D, Ciuffreda E, Corbo MR
(2020).
Effect of Physical and Chemical Treatments on Viability, Sub-Lethal Injury, and Release of Cellular Components from Bacillus clausii and Bacillus coagulans Spores and Cells.
-
DOI: 10.13345/j.cjb.200190
Li C, Jiang S, Du C, Zhou Y, Jiang S, Zhang G
(2021).
[Expression and characterization of beta-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-beta-D glucosamine production].
-
DOI: 10.1016/j.talanta.2021.122424
Klein D, Breuch R, Reinmuller J, Engelhard C, Kaul P
(2021).
Rapid detection and discrimination of food-related bacteria using IR-microspectroscopy in combination with multivariate statistical analysis.
-
DOI: 10.1016/j.foodres.2021.110705
Misiou O, Zourou C, Koutsoumanis K
(2021).
Development and validation of a predictive model for the effect of temperature, pH and water activity on the growth kinetics of Bacillus coagulans in non-refrigerated ready-to-eat food products.
-
DOI: 10.1186/s12866-022-02736-2
Tian W, Qin J, Lian C, Yao Q, Wang X
(2022).
Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH.
-
DOI: 10.13345/j.cjb.220980
Li J, Wang Y, Yu B, Wang L, Ju J
(2023).
[Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1].
-
DOI: 10.3389/fmicb.2023.1296692
Huang X, Tian W, Wang X, Qin J
(2023).
Time-resolved transcriptomic and proteomic profiling of Heyndrickxia coagulans during NaOH-buffered L-lactic acid production.
-
DOI: 10.1111/j.1365-2672.2007.03395.x
Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K
(2007).
Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1.
-
DOI: 10.1007/s11274-015-1851-0
Rumjuankiat K, Perez RH, Pilasombut K, Keawsompong S, Zendo T, Sonomoto K, Nitisinprasert S
(2015).
Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1.
-
DOI: 10.1016/0005-2744(79)90308-5
McArthur HA, Reynolds PE
(1979).
The solubilisation of the membrane-bound D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365.
-
DOI: 10.1016/0005-2744(80)90283-1
McArthur HA, Reynolds PE
(1980).
Purification and properties of the D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365.
-
DOI: 10.1263/jbb.101.457
Sakai K, Ezaki Y
(2006).
Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora.
-
DOI: 10.1016/j.biortech.2013.10.022
Ma K, Maeda T, You H, Shirai Y
(2013).
Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.
-
DOI: 10.3389/fmicb.2021.760385
Huang X, Ai F, Ji C, Tu P, Gao Y, Wu Y, Yan F, Yu T
(2021).
A Rapid Screening Method of Candidate Probiotics for Inflammatory Bowel Diseases and the Anti-inflammatory Effect of the Selected Strain Bacillus smithii XY1.
-
DOI: 10.1007/s00203-022-03229-6
Kieu HT, Pham TPT, Lo CI, Alibar S, Brechard L, Armstrong N, Decloquement P, Diallo A, Sokhna C, Million M, Lagier JC, Raoult D, Tidjani Alou M
(2022).
Weizmannia faecalis sp. nov., isolated from a human stool sample.
-
DOI: 10.1093/jambio/lxac021
Pesarico AP, Jesus GFA, Corneo E, Borges HM, Calixto KV, Garcez ML, Bellettini-Santos T, Voytena APL, Rossetto M, Ramlov F, Dal-Pizzol F, Michels M
(2023).
Bacillus strains prevent lipopolysaccharide-induced inflammation in gut and blood of male mice.