Strain sc|0017925


Strain numbers

609 = ATCC 7050 = BCRC 10606 = CCM 2013 = CCRC 10606 = CCUG 7417 = CFBP 4225 = CIP 66.25 = DSM 1 = HAMBI 1931 = IAM 1115 = IFO 12583 = IMET 10993 = JCM 2257 = KACC 11248 = LMG 6326 = NBIMCC 8941 = NBRC 12583 = NCCB 48014 = NCCB 77025 = NCDO 1761 = NCFB 1761 = NCIB 9365 = NCIMB 9365 = NCTC 10334 = NRIC 1005 = NRRL NRS-609 = NRS 609 = VKM B-497
This strain is associated as type material for multiple names:

StrainInfo: SI-ID 92137 T

Taxon
Heyndrickxia coagulans
Sample
Evaporated milk
Cultures (41)
LMG 6326 = ATCC 7050 = CCM 2013 = CCUG 7417 = CECT 12 = DSM 1 = IAM 1115 = IAM 12463 = IFO 12583 = JCM 2257 = LMG 17450 = LMG 17455 = NCFB 1761 = NCIB 9365 = NCTC 10334 = NRRL NRS-609 = NCDO 1761 = CCRC 10606 = IMET 10993 = NCIMB 9365 = VKM B-731 = VKM B-497 = LMD 48.14 = LMD 77.25 = NCAIM B.01086 = VTT E-82150 = KCTC 3625 = NBRC 12583 = NCCB 77025 = NCCB 48014 = BCRC 10606 = CFBP 4225 = HAMBI 1931 = CCT 0199 = CCT 2467 = KACC 11248 = NBIMCC 1511 = CNCTC 5646 = CGMCC 1.2009 = VTT E-98150 = CIP 66.25
Other Designations (32)
NRS 609 = FIRDI 606 = OUT 8403 = Logan B0005 = Logan B0194 = Logan B0936 = Gibson 1121 = USCC 2116 = CN 2202 = WDCM 00002 = OUT 8348 = NRIC 1005 = Porter = E-82150 = VKM 497 = CCTM 2874 = Hammer Porter ATCC7050 = USDA 609 = HNCMB101007 = LMG 6326T QC 9/99 = DSMZ 1 = 31884 = CCTM La 2874 = PCM 1843 = Smith 609 = Hammer Porter = Smith N.R 609 = LMG 6326T QC 9/02 = NR Smith 609 = 609 = VKM1115 = NRS-609
Sequences (28)
Associated Publications (39)
  • DOI: 10.1016/j.syapm.2022.126389
    Tolieng V, Tanaka N, Shiwa Y, Thitiprasert S, Kanchanasin P, Phongsopitanun W, Booncharoen A, Thongchul N, Tanasupawat S (2022). Weizmannia acidilactici sp. nov., a lactic acid producing bacterium isolated from soils.
  • DOI: 10.1111/j.1432-1033.1986.tb09723.x
    Suzuki Y, Tomura Y (1986). Purification and characterization of Bacillus coagulans oligo-1,6-glucosidase.
  • DOI: 10.1271/bbb.62.1093
    Kashiwabara S, Matsuki Y, Kishimoto T, Suzuki Y (1998). Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
  • DOI: 10.1016/j.syapm.2005.03.006
    le Roes M, Meyers PR (2005). Streptomyces pharetrae sp. nov., isolated from soil from the semi-arid Karoo region.
  • DOI: 10.1128/AEM.72.5.3228-3235.2006
    Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006). Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid.
  • DOI: 10.1111/j.1365-2672.2008.04105.x
    Riazi S, Wirawan RE, Badmaev V, Chikindas ML (2009). Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050.
  • DOI: 10.1099/ijs.0.003913-0
    Jung MY, Kim JS, Chang YH (2009). Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid.
  • DOI: 10.1111/j.1365-2672.2012.05376.x
    Riazi S, Dover SE, Chikindas ML (2012). Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050.
  • DOI: 10.4315/0362-028X.JFP-11-490
    Peng J, Mah JH, Somavat R, Mohamed H, Sastry S, Tang J (2012). Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.
  • DOI: 10.1007/s00253-016-7644-z
    Chen Y, Dong F, Wang Y (2016). Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.
  • DOI: 10.1016/j.fsi.2019.02.029
    Amoah K, Huang QC, Tan BP, Zhang S, Chi SY, Yang QH, Liu HY, Dong XH (2019). Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei.
  • DOI: 10.1016/j.ijfoodmicro.2020.108523
    Saroj DB, Gupta AK (2020). Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application.
  • DOI: 10.1016/j.biortech.2021.125880
    Tong KTX, Tan IS, Foo HCY, Tiong ACY, Lam MK, Lee KT (2021). Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract.
  • DOI: 10.1038/s41598-022-25688-z
    Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E (2022). In vitro assessment of probiotic attributes for strains contained in commercial formulations.
  • DOI: 10.3389/fmicb.2023.1124144
    Calvigioni M, Bertolini A, Codini S, Mazzantini D, Panattoni A, Massimino M, Celandroni F, Zucchi R, Saba A, Ghelardi E (2023). HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains.
  • DOI: 10.1016/j.biortech.2024.131082
    Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK (2024). Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production.
  • DOI: 10.1016/j.fct.2006.05.019
    Lucas R, Grande MA, Abriouel H, Maqueda M, Ben Omar N, Valdivia E, Martinez-Canamero M, Galvez A (2006). Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods.
  • DOI: 10.1016/j.jhazmat.2007.09.027
    Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T (2007). Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study.
  • DOI: 10.1016/j.biortech.2015.04.118
    Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S (2015). Hemp hurds biorefining: A path to green L-(+)-lactic acid production.
  • DOI: 10.1038/srep37916
    Sun L, Zhang C, Lyu P, Wang Y, Wang L, Yu B (2016). Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.
  • DOI: 10.1186/s12934-017-0827-1
    Zhang C, Zhou C, Assavasirijinda N, Yu B, Wang L, Ma Y (2017). Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.
  • DOI: 10.1186/s13068-018-1323-5
    Zheng Z, Jiang T, Zou L, Ouyang S, Zhou J, Lin X, He Q, Wang L, Yu B, Xu H, Ouyang J (2018). Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons.
  • DOI: 10.1128/AEM.00672-19
    Wang Y, Zhang C, Liu G, Ju J, Yu B, Wang L (2019). Elucidating the Role and Regulation of a Lactate Permease as Lactate Transporter in Bacillus coagulans DSM1.
  • DOI: 10.3390/foods9121814
    Bevilacqua A, Petruzzi L, Sinigaglia M, Speranza B, Campaniello D, Ciuffreda E, Corbo MR (2020). Effect of Physical and Chemical Treatments on Viability, Sub-Lethal Injury, and Release of Cellular Components from Bacillus clausii and Bacillus coagulans Spores and Cells.
  • DOI: 10.13345/j.cjb.200190
    Li C, Jiang S, Du C, Zhou Y, Jiang S, Zhang G (2021). [Expression and characterization of beta-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-beta-D glucosamine production].
  • DOI: 10.1016/j.talanta.2021.122424
    Klein D, Breuch R, Reinmuller J, Engelhard C, Kaul P (2021). Rapid detection and discrimination of food-related bacteria using IR-microspectroscopy in combination with multivariate statistical analysis.
  • DOI: 10.1016/j.foodres.2021.110705
    Misiou O, Zourou C, Koutsoumanis K (2021). Development and validation of a predictive model for the effect of temperature, pH and water activity on the growth kinetics of Bacillus coagulans in non-refrigerated ready-to-eat food products.
  • DOI: 10.1186/s12866-022-02736-2
    Tian W, Qin J, Lian C, Yao Q, Wang X (2022). Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH.
  • DOI: 10.13345/j.cjb.220980
    Li J, Wang Y, Yu B, Wang L, Ju J (2023). [Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1].
  • DOI: 10.3389/fmicb.2023.1296692
    Huang X, Tian W, Wang X, Qin J (2023). Time-resolved transcriptomic and proteomic profiling of Heyndrickxia coagulans during NaOH-buffered L-lactic acid production.
  • DOI: 10.1111/j.1365-2672.2007.03395.x
    Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K (2007). Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1.
  • DOI: 10.1007/s11274-015-1851-0
    Rumjuankiat K, Perez RH, Pilasombut K, Keawsompong S, Zendo T, Sonomoto K, Nitisinprasert S (2015). Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1.
  • DOI: 10.1016/0005-2744(79)90308-5
    McArthur HA, Reynolds PE (1979). The solubilisation of the membrane-bound D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365.
  • DOI: 10.1016/0005-2744(80)90283-1
    McArthur HA, Reynolds PE (1980). Purification and properties of the D-alanyl-D-alanine carboxypeptidase of Bacillus coagulans NCIB 9365.
  • DOI: 10.1263/jbb.101.457
    Sakai K, Ezaki Y (2006). Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora.
  • DOI: 10.1016/j.biortech.2013.10.022
    Ma K, Maeda T, You H, Shirai Y (2013). Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.
  • DOI: 10.3389/fmicb.2021.760385
    Huang X, Ai F, Ji C, Tu P, Gao Y, Wu Y, Yan F, Yu T (2021). A Rapid Screening Method of Candidate Probiotics for Inflammatory Bowel Diseases and the Anti-inflammatory Effect of the Selected Strain Bacillus smithii XY1.
  • DOI: 10.1007/s00203-022-03229-6
    Kieu HT, Pham TPT, Lo CI, Alibar S, Brechard L, Armstrong N, Decloquement P, Diallo A, Sokhna C, Million M, Lagier JC, Raoult D, Tidjani Alou M (2022). Weizmannia faecalis sp. nov., isolated from a human stool sample.
  • DOI: 10.1093/jambio/lxac021
    Pesarico AP, Jesus GFA, Corneo E, Borges HM, Calixto KV, Garcez ML, Bellettini-Santos T, Voytena APL, Rossetto M, Ramlov F, Dal-Pizzol F, Michels M (2023). Bacillus strains prevent lipopolysaccharide-induced inflammation in gut and blood of male mice.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Genomics

Genomes (1)

Metadata

Cannonical URL
https://seqco.de/s:17925
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license