-
DOI: 10.1007/BF00416964
Hegeman GD, Root RT
(1976).
The effect of a non-metabolizable analog on mandelate catabolism in Pseudomonas putida.
-
DOI: 10.1007/s00253-005-0068-9
Komeda H, Hariyama N, Asano Y
(2005).
L: -Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family.
-
DOI: 10.1021/bi00494a015
Tsou AY, Ransom SC, Gerlt JA, Buechter DD, Babbitt PC, Kenyon GL
(1990).
Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli.
-
DOI: 10.1128/jb.172.5.2224-2229.1990
Consevage MW, Phillips AT
(1990).
Sequence analysis of the hutH gene encoding histidine ammonia-lyase in Pseudomonas putida.
-
DOI: 10.1021/bi00323a010
Consevage MW, Phillips AT
(1985).
Presence and quantity of dehydroalanine in histidine ammonia-lyase from Pseudomonas putida.
-
DOI: 10.1128/jb.177.2.401-412.1995
Houghton JE, Brown TM, Appel AJ, Hughes EJ, Ornston LN
(1995).
Discontinuities in the evolution of Pseudomonas putida cat genes.
-
DOI: 10.1128/jb.177.7.1850-1859.1995
Kim Y, Watrud LS, Matin A
(1995).
A carbon starvation survival gene of Pseudomonas putida is regulated by sigma 54.
-
DOI: 10.1002/jobm.3620340408
King RS, Sechrist LL, Phillips AT
(1994).
A revised map location for the histidine utilization genes in Pseudomonas putida.
-
DOI: 10.1021/bi00211a003
Mitra B, Gerlt JA, Babbitt PC, Koo CW, Kenyon GL, Joseph D, Petsko GA
(1993).
A novel structural basis for membrane association of a protein: construction of a chimeric soluble mutant of (S)-mandelate dehydrogenase from Pseudomonas putida.
-
DOI: 10.1128/JB.185.8.2451-2456.2003
McLeish MJ, Kneen MM, Gopalakrishna KN, Koo CW, Babbitt PC, Gerlt JA, Kenyon GL
(2003).
Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633.
-
DOI: 10.1074/jbc.M411918200
Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N
(2004).
The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
-
DOI: 10.1111/j.1742-4658.2004.04541.x
Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N
(2005).
N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily.
-
DOI: 10.1016/j.ejmech.2005.10.003
Sonmez M, Berber I, Akbas E
(2005).
Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes.
-
DOI: 10.1128/aem.50.6.1545-1547.1985
Chang PL, Yen TF
(1985).
Interaction of Pseudomonas putida ATCC 12633 and Bacteriophage gh-1 in Berea Sandstone Rock.
-
DOI: 10.1128/aem.59.12.4330-4334.1993
Hermes HF, Sonke T, Peters PJ, van Balken JA, Kamphuis J, Dijkhuizen L, Meijer EM
(1993).
Purification and Characterization of an l-Aminopeptidase from Pseudomonas putida ATCC 12633.
-
DOI: 10.1021/es050981l
Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JM
(2006).
Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.
-
DOI: 10.1128/AEM.01541-06
Henning H, Leggewie C, Pohl M, Muller M, Eggert T, Jaeger KE
(2006).
Identification of novel benzoylformate decarboxylases by growth selection.
-
DOI: 10.1111/j.1365-2672.2007.03346.x
Boeris PS, Domenech CE, Lucchesi GI
(2007).
Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium.
-
DOI: 10.1016/j.bbagen.2007.08.007
Saehuan C, Rojanarata T, Wiyakrutta S, McLeish MJ, Meevootisom V
(2007).
Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201.
-
DOI: 10.1111/j.1365-2672.2007.03591.x
Liffourrena AS, Lopez FG, Salvano MA, Domenech CE, Lucchesi GI
(2007).
Degradation of tetradecyltrimethylammonium by Pseudomonas putida A ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al 3+ ions.
-
DOI: 10.1099/ijs.0.65233-0
Meyer JM, Gruffaz C, Tulkki T, Izard D
(2007).
Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida.
-
DOI: 10.1016/j.bbapap.2008.04.015
Yeung CK, Yep A, Kenyon GL, McLeish MJ
(2008).
Physical, kinetic and spectrophotometric studies of a NAD(P)-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633.
-
DOI: 10.1002/bit.260391010
Wilcocks R, Ward OP
(1992).
Factors affecting 2-hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida.
-
DOI: 10.1111/j.1472-765X.2009.02699.x
Boeris PS, Liffourrena AS, Salvano MA, Lucchesi GI
(2009).
Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium.
-
DOI: 10.1007/s00203-010-0577-5
Liffourrena AS, Salvano MA, Lucchesi GI
(2010).
Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways.
-
DOI: 10.1099/mic.0.054072-0
Boeris PS, Lucchesi GI
(2012).
The phosphatidylcholine synthase of Pseudomonas putida A ATCC 12633 is responsible for the synthesis of phosphatidylcholine, which acts as a temporary reservoir for Al3+.
-
DOI: 10.1007/s10532-012-9592-3
Bergero MF, Lucchesi GI
(2012).
Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads.
-
DOI: 10.1007/s12010-014-0862-x
Liffourrena AS, Lucchesi GI
(2014).
Identification, cloning and biochemical characterization of Pseudomonas putida A (ATCC 12633) monooxygenase enzyme necessary for the metabolism of tetradecyltrimethylammonium bromide.
-
DOI: 10.1021/bi500081r
Andrews FH, Rogers MP, Paul LN, McLeish MJ
(2014).
Perturbation of the monomer-monomer interfaces of the benzoylformate decarboxylase tetramer.
-
DOI: 10.1099/mic.0.081943-0
Heredia RM, Boeris PS, Biasutti MA, Lopez GA, Paulucci NS, Lucchesi GI
(2014).
Coordinated response of phospholipids and acyl components of membrane lipids in Pseudomonas putida A (ATCC 12633) under stress caused by cationic surfactants.
-
DOI: 10.1099/mic.0.000265
Marisa Heredia R, Sabrina Boeris P, Sebastian Liffourrena A, Fernanda Bergero M, Alberto Lopez G, Ines Lucchesi G
(2016).
Release of outer membrane vesicles in Pseudomonas putida as a response to stress caused by cationic surfactants.
-
DOI: 10.1111/jam.13238
Lopez GA, Heredia RM, Boeris PS, Lucchesi GI
(2016).
Content of cardiolipin of the membrane and sensitivity to cationic surfactants in Pseudomonas putida.
-
DOI: 10.1016/j.jbiotec.2016.07.026
Boeris PS, Agustin Mdel R, Acevedo DF, Lucchesi GI
(2016).
Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida.
-
DOI: 10.1093/protein/gzx015
Zahniser MPD, Prasad S, Kneen MM, Kreinbring CA, Petsko GA, Ringe D, McLeish MJ
(2017).
Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily.
-
Afshari E, Amini-Bayat Z, Hosseinkhani S, Bakhtiari N
(2017).
Cloning, Expression and Purification of Pseudomonas putida ATCC12633 Creatinase.
-
DOI: 10.1016/j.jbiotec.2018.03.003
Bergero MF, Lucchesi GI
(2018).
Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge.
-
DOI: 10.1016/j.jbiotec.2018.04.019
Liffourrena AS, Lucchesi GI
(2018).
Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants.
-
DOI: 10.1016/j.ecoenv.2018.07.098
Kamyabi A, Nouri H, Moghimi H
(2018).
Characterization of pyrene degradation and metabolite identification by Basidioascus persicus and mineralization enhancement with bacterial-yeast co-culture.
-
DOI: 10.1093/synbio/ysy003
Wang H, Li J, Jewett MC
(2018).
Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements.
-
DOI: 10.1007/s00284-020-02335-2
Pahlavan Yali M, Hajmalek M
(2021).
Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium.
-
DOI: 10.1016/j.meteno.2015.06.002
Pugh S, McKenna R, Halloum I, Nielsen DR
(2015).
Engineering Escherichia coli for renewable benzyl alcohol production.
-
DOI: 10.1186/s12934-023-02073-7
Kordesedehi R, Asadollahi MA, Shahpiri A, Biria D, Nikel PI
(2023).
Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida.
-
DOI: 10.1111/1751-7915.14448
Kordesedehi R, Shahpiri A, Asadollahi MA, Biria D, Nikel PI
(2024).
Enhanced chaotrope tolerance and (S)-2-hydroxypropiophenone production by recombinant Pseudomonas putida engineered with Pprl from Deinococcus radiodurans.
-
DOI: 10.1002/bit.260270913
Fieschko J, Humphrey AE
(1985).
Acetate inhibition of Pseudomonas putida.
-
DOI: 10.1016/j.jhazmat.2007.06.053
Martin MM, Perez JA, Fernandez FG, Sanchez JL, Lopez JL, Rodriguez SM
(2007).
A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324.
-
DOI: 10.1016/j.chemosphere.2007.08.027
Ballesteros Martin MM, Sanchez Perez JA, Acien Fernandez FG, Casas Lopez JL, Garcia-Ripoll AM, Arques A, Oller I, Malato Rodriguez S
(2007).
Combined photo-Fenton and biological oxidation for pesticide degradation: effect of photo-treated intermediates on biodegradation kinetics.
-
DOI: 10.1016/j.jhazmat.2007.11.069
Ballesteros Martin MM, Sanchez Perez JA, Garcia Sanchez JL, Montes de Oca L, Casas Lopez JL, Oller I, Malato Rodriguez S
(2007).
Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.
-
DOI: 10.1007/s00253-014-5773-9
Perez MC, Alvarez-Hornos FJ, Portune K, Gabaldon C
(2014).
Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.
-
DOI: 10.1093/femsml/uqae004
Periat C, Kuhn T, Buffi M, Corona-Ramirez A, Fatton M, Cailleau G, Chain PS, Stanley CE, Wick LY, Bindschedler S, Gonzalez D, Li Richter XY, Junier P
(2024).
Host and nonhost bacteria support bacteriophage dissemination along mycelia and abiotic dispersal networks.
-
DOI: 10.1078/0723-2020-00043
Kaech A, Egli T
(2001).
Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.
-
DOI: 10.1007/s00253-007-0914-z
Ballerstedt H, Volkers RJ, Mars AE, Hallsworth JE, dos Santos VA, Puchalka J, van Duuren J, Eggink G, Timmis KN, de Bont JA, Wery J
(2007).
Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies.
-
DOI: 10.1007/s13659-016-0118-2
Ettireddy S, Chandupatla V, Veeresham C
(2017).
Enantioselective Resolution of (R,S)-Carvedilol to (S)-(-)-Carvedilol by Biocatalysts.
-
DOI: 10.1128/aem.40.3.462-465.1980
Gutteridge CS, Norris JR
(1980).
Effect of different growth conditions on the discrimination of three bacteria by pyrolysis gas-liquid chromatography.
-
DOI: 10.1111/j.1574-6968.1993.tb06012.x
Hardy GP, Teixeira de Mattos MJ, Neijssel OM
(1993).
Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture.
-
DOI: 10.1006/eesa.2001.2089
Loffhagen N, Hartig C, Babel W
(2001).
Suitability of the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida NCTC 10936 as an indicator of the acute toxicity of chemicals.
-
DOI: 10.1271/bbb.68.317
Loffhagen N, Hartig C, Babel W
(2004).
Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids.
-
DOI: 10.1128/AEM.71.4.1915-1922.2005
Hartig C, Loffhagen N, Harms H
(2005).
Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida.
-
DOI: 10.1016/j.jhazmat.2022.129627
Yeap CSY, Nguyen NHA, Spanek R, Too CC, Benes V, Provaznik J, Cernik M, Sevcu A
(2022).
Dissolved iron released from nanoscale zero-valent iron (nZVI) activates the defense system in bacterium Pseudomonas putida, leading to high tolerance to oxidative stress.
-
DOI: 10.1264/jsme2.me08545
Nonaka K, Ohta H, Sato Y, Hosokawa K
(2008).
Utilization of phenylpropanoids by pseudomonas putida soil isolates and its probable taxonomic significance.
-
DOI: 10.1128/genomeA.00029-14
Ohji S, Yamazoe A, Hosoyama A, Tsuchikane K, Ezaki T, Fujita N
(2014).
The Complete Genome Sequence of Pseudomonas putida NBRC 14164T Confirms High Intraspecies Variation.
-
DOI: 10.1007/s12010-016-2263-9
Wu HL, Zhang JD, Zhang CF, Fan XJ, Chang HH, Wei WL
(2016).
Characterization of Four New Distinct omega-Transaminases from Pseudomonas putida NBRC 14164 for Kinetic Resolution of Racemic Amines and Amino Alcohols.
-
DOI: 10.1016/j.ab.2016.11.015
Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, Wei WL
(2016).
A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases.
-
DOI: 10.2323/jgam.2016.06.003
Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A, Kasai D, Yamazoe A, Fujita N, Ezaki T, Fukuda M
(2016).
Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group.
-
DOI: 10.3389/fmicb.2016.02100
Molina L, Geoffroy VA, Segura A, Udaondo Z, Ramos JL
(2016).
Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida.
-
DOI: 10.1007/s00284-018-1573-2
Detheridge AP, Griffith GW, Hopper DJ
(2018).
Genome Sequence Analysis of Two Pseudomonas putida Strains to Identify a 17-Hydroxylase Putatively Involved in Sparteine Degradation.
-
DOI: 10.1007/s10295-019-02159-5
Yang S, Li S, Jia X
(2019).
Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
-
DOI: 10.1007/s00284-019-01701-z
Xiang W, Chen S, Tian D, Huang C, Gao T
(2019).
Pseudomonas hutmensis sp. nov., a New Fluorescent Member of Pseudomonas putida Group.
-
DOI: 10.1264/jsme2.ME23019
Morohoshi T, Yaguchi N, Someya N
(2023).
Genomic Reclassification and Phenotypic Characterization of Pseudomonas putida Strains Deposited in Japanese Culture Collections.
-
DOI: 10.1099/ijsem.0.006395
Carlier A, Beaumel M, Moreau S, Acar T, Sana TG, Cnockaert M, Vandamme P
(2024).
Pseudomonas fortuita sp. nov., isolated from the endosphere of a wild yam.
-
DOI: 10.1007/s00284-014-0545-4
Gao J, Li BY, Wang HH, Liu ZQ
(2014).
Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution.
-
Grigor'eva NV, Kondrat'eva TF, Krasil'nikova EN, Karavaiko GI
(2006).
[Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].
-
DOI: 10.1021/bi00483a026
Persmark M, Frejd T, Mattiasson B
(1990).
Purification, characterization, and structure of pseudobactin 589 A, a siderophore from a plant growth promoting Pseudomonas.