Strain sc|0018697


Strain numbers

ATCC 12633 = CCUG 12690 = CFBP 2066 = CIP 52.191 = DSM 291 = HAMBI 7 = IFO 14164 = JCM 13063 = JCM 20120 = LMG 2257 = NBIMCC 1090 = NBRC 14164 = NCAIM B.01634 = NCCB 68020 = NCCB 72006 = NCTC 10936

StrainInfo: SI-ID 4217 T

Taxon
Pseudomonas putida
Sample
Soil by lactate enrichment (US)
Cultures (49)
LMG 2257 = ATCC 12633 = ATCC 23467 = CCUG 12690 = CCUG 2091 = CECT 324 = DSM 291 = IAM 1236 = ICMP 2758 = IFO 14164 = JCM 3697 = NCIB 9494 = NCIB 9528 = NCTC 10936 = PDDCC 2758 = NCIMB 9494 = NCIMB9528 = HUT 8100 = VKM B-1301 = CIP 52.191 = LMD 68.20 = LMD 72.6 = CCRC 10459 = CFBP 2066 = VTT E-92005 = KCTC 1644 = KCTC 1751 = CCM 7156 = NCCB 68020 = NCCB 72006 = NBRC 14164 = HAMBI 7 = NCAIM B.01634 = BCRC 10459 = CCT 2357 = IAM 1235 = ICMP 3510 = NCIMB 13936 = NCIMB 30162 = JCM 13063 = NCAIM B.01157 = NCAIM B.01444 = NCAIM B.01445 = NCAIM B.01447 = CNCTC 5802 = JCM 20120 = VKM B-2187 = DSM 50202 = DSM 50906
Other Designations (42)
CNCTC Ps 161/78 = USCC 2032 = Stanier A.3.12 = Kosako 85004 = Jacob PF15 = ICPB 2693 = FIRDI 459 = Palleroni # 90 = KM 888 = CCEB 848 = ICPB 2484 = WDCM 00117 = Stanier 90 = NZRCC 10269 = DSMZ 291 = Bs2 = LMG2257T QC 5/04 = DSMZ 50906 = NCCB NCCB 68020 = LMAU P60 = DSMZ 50202 = DEB-3515 = R-17431 = KM 1081 = DEB-4462 = DEB-9989 = R.Y. Stanier 90 = CCTM La 3365 = DEB-9829 = DEB-2134 = DEB-8227 = R.Y.Stainer 90 = LMG 2257T QC 11/99 = VKPM, B-4589 = R. Hugh RH827 = DEB-8923 = K. Yokozawa 40F = DEB-1106 = #90 = ICPB 2963 = A 3.12 = A.3.12
Sequences (67)
Associated Publications (72)
  • DOI: 10.1007/BF00416964
    Hegeman GD, Root RT (1976). The effect of a non-metabolizable analog on mandelate catabolism in Pseudomonas putida.
  • DOI: 10.1007/s00253-005-0068-9
    Komeda H, Hariyama N, Asano Y (2005). L: -Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family.
  • DOI: 10.1021/bi00494a015
    Tsou AY, Ransom SC, Gerlt JA, Buechter DD, Babbitt PC, Kenyon GL (1990). Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli.
  • DOI: 10.1128/jb.172.5.2224-2229.1990
    Consevage MW, Phillips AT (1990). Sequence analysis of the hutH gene encoding histidine ammonia-lyase in Pseudomonas putida.
  • DOI: 10.1021/bi00323a010
    Consevage MW, Phillips AT (1985). Presence and quantity of dehydroalanine in histidine ammonia-lyase from Pseudomonas putida.
  • DOI: 10.1128/jb.177.2.401-412.1995
    Houghton JE, Brown TM, Appel AJ, Hughes EJ, Ornston LN (1995). Discontinuities in the evolution of Pseudomonas putida cat genes.
  • DOI: 10.1128/jb.177.7.1850-1859.1995
    Kim Y, Watrud LS, Matin A (1995). A carbon starvation survival gene of Pseudomonas putida is regulated by sigma 54.
  • DOI: 10.1002/jobm.3620340408
    King RS, Sechrist LL, Phillips AT (1994). A revised map location for the histidine utilization genes in Pseudomonas putida.
  • DOI: 10.1021/bi00211a003
    Mitra B, Gerlt JA, Babbitt PC, Koo CW, Kenyon GL, Joseph D, Petsko GA (1993). A novel structural basis for membrane association of a protein: construction of a chimeric soluble mutant of (S)-mandelate dehydrogenase from Pseudomonas putida.
  • DOI: 10.1128/JB.185.8.2451-2456.2003
    McLeish MJ, Kneen MM, Gopalakrishna KN, Koo CW, Babbitt PC, Gerlt JA, Kenyon GL (2003). Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633.
  • DOI: 10.1074/jbc.M411918200
    Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2004). The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
  • DOI: 10.1111/j.1742-4658.2004.04541.x
    Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005). N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily.
  • DOI: 10.1016/j.ejmech.2005.10.003
    Sonmez M, Berber I, Akbas E (2005). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes.
  • DOI: 10.1128/aem.50.6.1545-1547.1985
    Chang PL, Yen TF (1985). Interaction of Pseudomonas putida ATCC 12633 and Bacteriophage gh-1 in Berea Sandstone Rock.
  • DOI: 10.1128/aem.59.12.4330-4334.1993
    Hermes HF, Sonke T, Peters PJ, van Balken JA, Kamphuis J, Dijkhuizen L, Meijer EM (1993). Purification and Characterization of an l-Aminopeptidase from Pseudomonas putida ATCC 12633.
  • DOI: 10.1021/es050981l
    Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JM (2006). Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.
  • DOI: 10.1128/AEM.01541-06
    Henning H, Leggewie C, Pohl M, Muller M, Eggert T, Jaeger KE (2006). Identification of novel benzoylformate decarboxylases by growth selection.
  • DOI: 10.1111/j.1365-2672.2007.03346.x
    Boeris PS, Domenech CE, Lucchesi GI (2007). Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium.
  • DOI: 10.1016/j.bbagen.2007.08.007
    Saehuan C, Rojanarata T, Wiyakrutta S, McLeish MJ, Meevootisom V (2007). Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201.
  • DOI: 10.1111/j.1365-2672.2007.03591.x
    Liffourrena AS, Lopez FG, Salvano MA, Domenech CE, Lucchesi GI (2007). Degradation of tetradecyltrimethylammonium by Pseudomonas putida A ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al 3+ ions.
  • DOI: 10.1099/ijs.0.65233-0
    Meyer JM, Gruffaz C, Tulkki T, Izard D (2007). Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida.
  • DOI: 10.1016/j.bbapap.2008.04.015
    Yeung CK, Yep A, Kenyon GL, McLeish MJ (2008). Physical, kinetic and spectrophotometric studies of a NAD(P)-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633.
  • DOI: 10.1002/bit.260391010
    Wilcocks R, Ward OP (1992). Factors affecting 2-hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida.
  • DOI: 10.1111/j.1472-765X.2009.02699.x
    Boeris PS, Liffourrena AS, Salvano MA, Lucchesi GI (2009). Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium.
  • DOI: 10.1007/s00203-010-0577-5
    Liffourrena AS, Salvano MA, Lucchesi GI (2010). Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways.
  • DOI: 10.1099/mic.0.054072-0
    Boeris PS, Lucchesi GI (2012). The phosphatidylcholine synthase of Pseudomonas putida A ATCC 12633 is responsible for the synthesis of phosphatidylcholine, which acts as a temporary reservoir for Al3+.
  • DOI: 10.1007/s10532-012-9592-3
    Bergero MF, Lucchesi GI (2012). Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads.
  • DOI: 10.1007/s12010-014-0862-x
    Liffourrena AS, Lucchesi GI (2014). Identification, cloning and biochemical characterization of Pseudomonas putida A (ATCC 12633) monooxygenase enzyme necessary for the metabolism of tetradecyltrimethylammonium bromide.
  • DOI: 10.1021/bi500081r
    Andrews FH, Rogers MP, Paul LN, McLeish MJ (2014). Perturbation of the monomer-monomer interfaces of the benzoylformate decarboxylase tetramer.
  • DOI: 10.1099/mic.0.081943-0
    Heredia RM, Boeris PS, Biasutti MA, Lopez GA, Paulucci NS, Lucchesi GI (2014). Coordinated response of phospholipids and acyl components of membrane lipids in Pseudomonas putida A (ATCC 12633) under stress caused by cationic surfactants.
  • DOI: 10.1099/mic.0.000265
    Marisa Heredia R, Sabrina Boeris P, Sebastian Liffourrena A, Fernanda Bergero M, Alberto Lopez G, Ines Lucchesi G (2016). Release of outer membrane vesicles in Pseudomonas putida as a response to stress caused by cationic surfactants.
  • DOI: 10.1111/jam.13238
    Lopez GA, Heredia RM, Boeris PS, Lucchesi GI (2016). Content of cardiolipin of the membrane and sensitivity to cationic surfactants in Pseudomonas putida.
  • DOI: 10.1016/j.jbiotec.2016.07.026
    Boeris PS, Agustin Mdel R, Acevedo DF, Lucchesi GI (2016). Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida.
  • DOI: 10.1093/protein/gzx015
    Zahniser MPD, Prasad S, Kneen MM, Kreinbring CA, Petsko GA, Ringe D, McLeish MJ (2017). Structure and mechanism of benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633, a member of the Class 3 aldehyde dehydrogenase superfamily.
  • Afshari E, Amini-Bayat Z, Hosseinkhani S, Bakhtiari N (2017). Cloning, Expression and Purification of Pseudomonas putida ATCC12633 Creatinase.
  • DOI: 10.1016/j.jbiotec.2018.03.003
    Bergero MF, Lucchesi GI (2018). Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge.
  • DOI: 10.1016/j.jbiotec.2018.04.019
    Liffourrena AS, Lucchesi GI (2018). Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants.
  • DOI: 10.1016/j.ecoenv.2018.07.098
    Kamyabi A, Nouri H, Moghimi H (2018). Characterization of pyrene degradation and metabolite identification by Basidioascus persicus and mineralization enhancement with bacterial-yeast co-culture.
  • DOI: 10.1093/synbio/ysy003
    Wang H, Li J, Jewett MC (2018). Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements.
  • DOI: 10.1007/s00284-020-02335-2
    Pahlavan Yali M, Hajmalek M (2021). Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium.
  • DOI: 10.1016/j.meteno.2015.06.002
    Pugh S, McKenna R, Halloum I, Nielsen DR (2015). Engineering Escherichia coli for renewable benzyl alcohol production.
  • DOI: 10.1186/s12934-023-02073-7
    Kordesedehi R, Asadollahi MA, Shahpiri A, Biria D, Nikel PI (2023). Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida.
  • DOI: 10.1111/1751-7915.14448
    Kordesedehi R, Shahpiri A, Asadollahi MA, Biria D, Nikel PI (2024). Enhanced chaotrope tolerance and (S)-2-hydroxypropiophenone production by recombinant Pseudomonas putida engineered with Pprl from Deinococcus radiodurans.
  • DOI: 10.1002/bit.260270913
    Fieschko J, Humphrey AE (1985). Acetate inhibition of Pseudomonas putida.
  • DOI: 10.1016/j.jhazmat.2007.06.053
    Martin MM, Perez JA, Fernandez FG, Sanchez JL, Lopez JL, Rodriguez SM (2007). A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324.
  • DOI: 10.1016/j.chemosphere.2007.08.027
    Ballesteros Martin MM, Sanchez Perez JA, Acien Fernandez FG, Casas Lopez JL, Garcia-Ripoll AM, Arques A, Oller I, Malato Rodriguez S (2007). Combined photo-Fenton and biological oxidation for pesticide degradation: effect of photo-treated intermediates on biodegradation kinetics.
  • DOI: 10.1016/j.jhazmat.2007.11.069
    Ballesteros Martin MM, Sanchez Perez JA, Garcia Sanchez JL, Montes de Oca L, Casas Lopez JL, Oller I, Malato Rodriguez S (2007). Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.
  • DOI: 10.1007/s00253-014-5773-9
    Perez MC, Alvarez-Hornos FJ, Portune K, Gabaldon C (2014). Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.
  • DOI: 10.1093/femsml/uqae004
    Periat C, Kuhn T, Buffi M, Corona-Ramirez A, Fatton M, Cailleau G, Chain PS, Stanley CE, Wick LY, Bindschedler S, Gonzalez D, Li Richter XY, Junier P (2024). Host and nonhost bacteria support bacteriophage dissemination along mycelia and abiotic dispersal networks.
  • DOI: 10.1078/0723-2020-00043
    Kaech A, Egli T (2001). Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.
  • DOI: 10.1007/s00253-007-0914-z
    Ballerstedt H, Volkers RJ, Mars AE, Hallsworth JE, dos Santos VA, Puchalka J, van Duuren J, Eggink G, Timmis KN, de Bont JA, Wery J (2007). Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies.
  • DOI: 10.1007/s13659-016-0118-2
    Ettireddy S, Chandupatla V, Veeresham C (2017). Enantioselective Resolution of (R,S)-Carvedilol to (S)-(-)-Carvedilol by Biocatalysts.
  • DOI: 10.1128/aem.40.3.462-465.1980
    Gutteridge CS, Norris JR (1980). Effect of different growth conditions on the discrimination of three bacteria by pyrolysis gas-liquid chromatography.
  • DOI: 10.1111/j.1574-6968.1993.tb06012.x
    Hardy GP, Teixeira de Mattos MJ, Neijssel OM (1993). Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture.
  • DOI: 10.1006/eesa.2001.2089
    Loffhagen N, Hartig C, Babel W (2001). Suitability of the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida NCTC 10936 as an indicator of the acute toxicity of chemicals.
  • DOI: 10.1271/bbb.68.317
    Loffhagen N, Hartig C, Babel W (2004). Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids.
  • DOI: 10.1128/AEM.71.4.1915-1922.2005
    Hartig C, Loffhagen N, Harms H (2005). Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida.
  • DOI: 10.1016/j.jhazmat.2022.129627
    Yeap CSY, Nguyen NHA, Spanek R, Too CC, Benes V, Provaznik J, Cernik M, Sevcu A (2022). Dissolved iron released from nanoscale zero-valent iron (nZVI) activates the defense system in bacterium Pseudomonas putida, leading to high tolerance to oxidative stress.
  • DOI: 10.1264/jsme2.me08545
    Nonaka K, Ohta H, Sato Y, Hosokawa K (2008). Utilization of phenylpropanoids by pseudomonas putida soil isolates and its probable taxonomic significance.
  • DOI: 10.1128/genomeA.00029-14
    Ohji S, Yamazoe A, Hosoyama A, Tsuchikane K, Ezaki T, Fujita N (2014). The Complete Genome Sequence of Pseudomonas putida NBRC 14164T Confirms High Intraspecies Variation.
  • DOI: 10.1007/s12010-016-2263-9
    Wu HL, Zhang JD, Zhang CF, Fan XJ, Chang HH, Wei WL (2016). Characterization of Four New Distinct omega-Transaminases from Pseudomonas putida NBRC 14164 for Kinetic Resolution of Racemic Amines and Amino Alcohols.
  • DOI: 10.1016/j.ab.2016.11.015
    Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, Wei WL (2016). A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases.
  • DOI: 10.2323/jgam.2016.06.003
    Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A, Kasai D, Yamazoe A, Fujita N, Ezaki T, Fukuda M (2016). Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group.
  • DOI: 10.3389/fmicb.2016.02100
    Molina L, Geoffroy VA, Segura A, Udaondo Z, Ramos JL (2016). Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida.
  • DOI: 10.1007/s00284-018-1573-2
    Detheridge AP, Griffith GW, Hopper DJ (2018). Genome Sequence Analysis of Two Pseudomonas putida Strains to Identify a 17-Hydroxylase Putatively Involved in Sparteine Degradation.
  • DOI: 10.1007/s10295-019-02159-5
    Yang S, Li S, Jia X (2019). Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
  • DOI: 10.1007/s00284-019-01701-z
    Xiang W, Chen S, Tian D, Huang C, Gao T (2019). Pseudomonas hutmensis sp. nov., a New Fluorescent Member of Pseudomonas putida Group.
  • DOI: 10.1264/jsme2.ME23019
    Morohoshi T, Yaguchi N, Someya N (2023). Genomic Reclassification and Phenotypic Characterization of Pseudomonas putida Strains Deposited in Japanese Culture Collections.
  • DOI: 10.1099/ijsem.0.006395
    Carlier A, Beaumel M, Moreau S, Acar T, Sana TG, Cnockaert M, Vandamme P (2024). Pseudomonas fortuita sp. nov., isolated from the endosphere of a wild yam.
  • DOI: 10.1007/s00284-014-0545-4
    Gao J, Li BY, Wang HH, Liu ZQ (2014). Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution.
  • Grigor'eva NV, Kondrat'eva TF, Krasil'nikova EN, Karavaiko GI (2006). [Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].
  • DOI: 10.1021/bi00483a026
    Persmark M, Frejd T, Mattiasson B (1990). Purification, characterization, and structure of pseudobactin 589 A, a siderophore from a plant growth promoting Pseudomonas.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:18697
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license