-
DOI: 10.1111/lam.13748
Harnpicharnchai P, Mayteeworakoon S, Kitikhun S, Chunhametha S, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S
(2022).
High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains.
-
DOI: 10.1128/jb.178.2.403-409.1996
Jahns T
(1996).
Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii.
-
DOI: 10.1007/s002030050325
Beck L, Jahns T
(1996).
Regulation of leucine transport by intracellular pH in Bacillus pasteurii.
-
DOI: 10.1016/j.chemosphere.2010.09.066
Okwadha GD, Li J
(2010).
Optimum conditions for microbial carbonate precipitation.
-
DOI: 10.1016/j.jenvman.2011.05.029
Okwadha GD, Li J
(2011).
Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation.
-
DOI: 10.1016/j.jbiosc.2014.08.009
Eryuruk K, Yang S, Suzuki D, Sakaguchi I, Akatsuka T, Tsuchiya T, Katayama A
(2014).
Reducing hydraulic conductivity of porous media using CaCO(3) precipitation induced by Sporosarcina pasteurii.
-
DOI: 10.1016/j.jbiosc.2015.01.020
Eryuruk K, Yang S, Suzuki D, Sakaguchi I, Katayama A
(2015).
Effects of bentonite and yeast extract as nutrient on decrease in hydraulic conductivity of porous media due to CaCO3 precipitation induced by Sporosarcina pasteurii.
-
DOI: 10.3390/ma9060468
Kim G, Youn H
(2016).
Microbially Induced Calcite Precipitation Employing Environmental Isolates.
-
DOI: 10.1021/acs.est.7b04271
Graddy CMR, Gomez MG, Kline LM, Morrill SR, DeJong JT, Nelson DC
(2018).
Diversity of Sporosarcina-like Bacterial Strains Obtained from Meter-Scale Augmented and Stimulated Biocementation Experiments.
-
DOI: 10.1111/jam.14384
Skorupa DJ, Akyel A, Fields MW, Gerlach R
(2019).
Facultative and anaerobic consortia of haloalkaliphilic ureolytic micro-organisms capable of precipitating calcium carbonate.
-
DOI: 10.1038/s41598-021-94614-6
Dubey AA, Ravi K, Mukherjee A, Sahoo L, Abiala MA, Dhami NK
(2021).
Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility.
-
DOI: 10.4014/jmb.2104.04019
Han PP, Geng WJ, Li MN, Jia SR, Yin JL, Xue RZ
(2021).
Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology.
-
DOI: 10.3390/microorganisms9081691
Sovljanski O, Pezo L, Stanojev J, Bajac B, Kovac S, Toth E, Ristic I, Tomic A, Ranitovic A, Cvetkovic D, Markov S
(2021).
Comprehensive Profiling of Microbiologically Induced CaCO(3) Precipitation by Ureolytic Bacillus Isolates from Alkaline Soils.
-
DOI: 10.1007/BF00413026
Christians S, Kaltwasser H
(1986).
Nickel-content of urease from Bacillus pasteurii.
-
DOI: 10.1371/journal.pone.0212990
Royne A, Phua YJ, Balzer Le S, Eikjeland IG, Josefsen KD, Markussen S, Myhr A, Throne-Holst H, Sikorski P, Wentzel A
(2019).
Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production.
-
DOI: 10.1038/s41598-020-79904-9
Lapierre FM, Schmid J, Ederer B, Ihling N, Buchs J, Huber R
(2020).
Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media.
-
DOI: 10.1002/jobm.202100275
Sovljanski O, Pezo L, Tomic A, Ranitovic A, Cvetkovic D, Markov S
(2021).
Contribution of bacterial cells as nucleation centers in microbiologically induced CaCO(3) precipitation-A mathematical modeling approach.
-
DOI: 10.1016/j.jbiotec.2022.04.002
Sovljanski O, Pezo L, Grahovac J, Tomic A, Ranitovic A, Cvetkovic D, Markov S
(2022).
Best-performing Bacillus strains for microbiologically induced CaCO3 precipitation: Screening of relative influence of operational and environmental factors.
-
DOI: 10.3390/ma16020642
Vucetic S, Cjepa D, Miljevic B, Bergh JMV, Sovljanski O, Tomic A, Nikolic E, Markov S, Hirsenberger H, Ranogajec J
(2023).
Bio-Stimulated Surface Healing of Historical and Compatible Conservation Mortars.
-
DOI: 10.1016/j.jenvman.2024.120018
Li W, Cai Y, Li Y, Achal V
(2024).
Mobility, speciation of cadmium, and bacterial community composition along soil depths during microbial carbonate precipitation under simulated acid rain.
-
DOI: 10.1002/biot.202300466
Lapierre FM, Huber R
(2024).
Feeding strategies for Sporosarcina pasteurii cultivation unlock more efficient production of ureolytic biomass for MICP.
-
DOI: 10.1099/ijsem.0.001835
Sun Y, Zhao Q, Zhi D, Wang Z, Wang Y, Xie Q, Wu Z, Wang X, Li Y, Yu L, Yang H, Zhou J, Li H
(2017).
Sporosarcina terrae sp. nov., isolated from orchard soil.
-
DOI: 10.1099/ijsem.0.005244
Kong D, Xia Z, Gao Y, Zhou Y, Jiang X, Xu P, Guo W, Ruan Z
(2022).
Sporosarcina jiandibaonis sp. nov., isolated from saline soil.
-
DOI: 10.1016/j.micres.2016.03.010
Yoosathaporn S, Tiangburanatham P, Bovonsombut S, Chaipanich A, Pathom-Aree W
(2016).
A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.
-
DOI: 10.1007/s10295-008-0514-7
Achal V, Mukherjee A, Basu PC, Reddy MS
(2008).
Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii.
-
DOI: 10.1007/s10295-009-0581-4
Sarda D, Choonia HS, Sarode DD, Lele SS
(2009).
Biocalcification by Bacillus pasteurii urease: a novel application.
-
DOI: 10.1007/s11274-013-1439-5
Raut SH, Sarode DD, Lele SS
(2013).
Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures.