Strain sc|0021064


Strain numbers

ATCC 15697 = BCRC 14602 = BCRC 15416 = CCRC 14602 = CCRC 15416 = CCUG 30512 = CCUG 30512 B = CGMCC 1.1853 = CGMCC 1.2202 = CIP 64.67 = DSM 20088 = HAMBI 1374 = HAMBI 555 = HAMBI 574 = JCM 1222 = LMG 8811 = NBIMCC 8822 = NCAIM B.01821 = NCDO 2205 = NCFB 2205 = NCIMB 702205 = NCTC 11817 = S12
This strain is associated as type material for multiple names:

StrainInfo: SI-ID 7401

Taxon
Bifidobacterium longum (not Bifidobacterium longum subsp. infantis)
Sample
Intestine of infant
Cultures (34)
LMG 8811 = ATCC 15697 = CCUG 18368 = JCM 1222 = LMG 10499 = LMG 11046 = NCFB 2205 = NCTC 11817 = LMG 13203 = CCUG 30512 = NCDO 2205 = CCRC 14602 = CCRC 15416 = NCIMB 702205 = CIP 64.67 = CECT 4551 = KCTC 3249 = KCTC 3270 = AS 1.1853 = AS 1.2202 = CCM 4990 = NCAIM B.01821 = BCRC 14602 = BCRC 15416 = HAMBI 1374 = HAMBI 555 = HAMBI 574 = NRRL B-41661 = DSM 20088 = CGMCC 1.1853 = CGMCC 1.2202 = VTT E-97796 = VTT E-021916 = CCUG 30512 B
Other Designations (15)
BF 38 = Reuter S12 = CCTM 3067 = CUETM 89-19 = G. Reuter S12 = PRSF-B072 = CCTM La 3067 = LMG 8811QC2/99 = E-97796 = Quest Q90435 = PRSF-B069 = AS 1.1853/1.2202 = LMG 8811T QC 5/03 = S12 = DSMZ 20088
Sequences (47)
Associated Publications (61)
  • DOI: 10.1021/jf0710480
    LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, Mills DA, German JB (2007). Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation.
  • DOI: 10.1073/pnas.0809584105
    Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.
  • DOI: 10.1128/AEM.00675-10
    LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA (2010). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
  • DOI: 10.1128/AEM.06762-11
    Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, Mills DA (2011). Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides.
  • DOI: 10.1016/j.anaerobe.2012.04.012
    Garrido D, Ruiz-Moyano S, Mills DA (2012). Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis.
  • DOI: 10.1128/AEM.00782-12
    Tamayo-Ramos JA, Sanz-Penella JM, Yebra MJ, Monedero V, Haros M (2012). Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697.
  • DOI: 10.1074/mcp.M112.018119
    Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB, Lebrilla CB, Mills DA (2012). Endo-beta-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins.
  • DOI: 10.1021/ac301128s
    Strum JS, Kim J, Wu S, De Leoz ML, Peacock K, Grimm R, German JB, Mills DA, Lebrilla CB (2012). Identification and accurate quantitation of biological oligosaccharide mixtures.
  • DOI: 10.1016/j.fm.2012.10.003
    Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA (2012). Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates.
  • DOI: 10.1128/AEM.03343-12
    Oda H, Wakabayashi H, Yamauchi K, Sato T, Xiao JZ, Abe F, Iwatsuki K (2013). Isolation of a bifidogenic peptide from the pepsin hydrolysate of bovine lactoferrin.
  • DOI: 10.3168/jds.2012-6112
    Chen PW, Jheng TT, Shyu CL, Mao FC (2013). Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens.
  • DOI: 10.1371/journal.pone.0067224
    Kavanaugh DW, O'Callaghan J, Butto LF, Slattery H, Lane J, Clyne M, Kane M, Joshi L, Hickey RM (2013). Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response.
  • DOI: 10.3109/02652048.2013.834990
    Rodes L, Tomaro-Duchesneau C, Saha S, Paul A, Malhotra M, Marinescu D, Shao W, Kahouli I, Prakash S (2013). Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-L-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model.
  • DOI: 10.1093/glycob/cwt104
    Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M (2013). Distinct substrate specificities of three glycoside hydrolase family 42 beta-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.
  • DOI: 10.1107/S1399004714004209
    Wang KC, Lyu SY, Liu YC, Chang CY, Wu CJ, Li TL (2014). Insights into the binding specificity and catalytic mechanism of N-acetylhexosamine 1-phosphate kinases through multiple reaction complexes.
  • DOI: 10.1155/2014/602832
    Rodes L, Saha S, Tomaro-Duchesneau C, Prakash S (2014). Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 favorably modulates gut microbiota and reduces circulating endotoxins in F344 rats.
  • DOI: 10.1016/j.enzmictec.2014.10.001
    Matsumoto T, Shimada S, Hata Y, Tanaka T, Kondo A (2014). Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697.
  • DOI: 10.1002/btpr.2135
    Karav S, Bell JM, Le Parc A, Liu Y, Mills DA, Block DE, Barile D (2015). Characterizing the release of bioactive N-glycans from dairy products by a novel endo-beta-N-acetylglucosaminidase.
  • DOI: 10.1002/btpr.2133
    Parc AL, Karav S, De Moura Bell JMLN, Frese SA, Liu Y, Mills DA, Block DE, Barile D (2015). A novel endo-beta-N-acetylglucosaminidase releases specific N-glycans depending on different reaction conditions.
  • DOI: 10.1016/j.anaerobe.2015.07.007
    Averina O, Alekseeva M, Shkoporov A, Danilenko V (2015). Functional analysis of the type II toxin-antitoxin systems of the MazEF and RelBE families in Bifidobacterium longum subsp. infantis ATCC 15697.
  • DOI: 10.1038/srep13517
    Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA (2015). Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
  • DOI: 10.1099/ijsem.0.000924
    Michelini S, Modesto M, Pisi AM, Filippini G, Sandri C, Spiezio C, Biavati B, Sgorbati B, Mattarelli P (2016). Bifidobacterium eulemuris sp. nov., isolated from faeces of black lemurs (Eulemur macaco).
  • DOI: 10.1038/ismej.2015.236
    Turroni F, Milani C, Duranti S, Mancabelli L, Mangifesta M, Viappiani A, Lugli GA, Ferrario C, Gioiosa L, Ferrarini A, Li J, Palanza P, Delledonne M, van Sinderen D, Ventura M (2016). Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach.
  • DOI: 10.1128/AEM.00547-16
    Karav S, Le Parc A, Leite Nobrega de Moura Bell JM, Frese SA, Kirmiz N, Block DE, Barile D, Mills DA (2016). Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria.
  • DOI: 10.1111/jam.13154
    Avila-Fernandez A, Cuevas-Juarez E, Rodriguez-Alegria ME, Olvera C, Lopez-Munguia A (2016). Functional characterization of a novel beta-fructofuranosidase from Bifidobacterium longum subsp. infantis ATCC 15697 on structurally diverse fructans.
  • DOI: 10.1002/btpr.2385
    Karav S, Cohen JL, Barile D, de Moura Bell JM (2016). Recent advances in immobilization strategies for glycosidases.
  • DOI: 10.3168/jds.2017-12753
    Thongaram T, Hoeflinger JL, Chow J, Miller MJ (2017). Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli.
  • DOI: 10.3390/foods7120196
    Quinn EM, Slattery H, Thompson AP, Kilcoyne M, Joshi L, Hickey RM (2018). Mining Milk for Factors which Increase the Adherence of Bifidobacterium longum subsp. infantis to Intestinal Cells.
  • DOI: 10.3920/BM2019.0046
    Lai WT, Huang FC (2019). Probiotics exert reciprocal effects on autophagy and interleukin-1beta expression in Salmonella-infected intestinal epithelial cells via autophagy-related 16L1 protein.
  • DOI: 10.3390/foods9030348
    Quinn EM, Slattery H, Walsh D, Joshi L, Hickey RM (2020). Bifidobacterium longum subsp. infantis ATCC 15697 and Goat Milk Oligosaccharides Show Synergism In Vitro as Anti-Infectives against Campylobacter jejuni.
  • DOI: 10.3390/ijms21134632
    Quinn EM, Kilcoyne M, Walsh D, Joshi L, Hickey RM (2020). A Whey Fraction Rich in Immunoglobulin G Combined with Bifidobacterium longum subsp. infantis ATCC 15697 Exhibits Synergistic Effects against Campylobacter jejuni.
  • DOI: 10.1038/s41598-020-72792-z
    Zabel BE, Gerdes S, Evans KC, Nedveck D, Singles SK, Volk B, Budinoff C (2020). Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697.
  • DOI: 10.3389/fmicb.2020.573335
    Solopova A, Bottacini F, Venturi Degli Esposti E, Amaretti A, Raimondi S, Rossi M, van Sinderen D (2020). Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697.
  • DOI: 10.1099/ijsem.0.004573
    Neuzil-Bunesova V, Lugli GA, Modrackova N, Vlkova E, Bolechova P, Burtscher J, Longhi G, Mancabelli L, Killer J, Domig K, Ventura M (2020). Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov.
  • DOI: 10.1016/j.anaerobe.2021.102320
    Higgins MA, Ryan KS (2021). Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697.
  • DOI: 10.1128/AEM.02459-20
    Warda AK, Clooney AG, Ryan F, de Almeida Bettio PH, Di Benedetto G, Ross RP, Hill C (2021). A postbiotic consisting of heat-treated lactobacilli has a bifidogenic effect in pure culture and in human fermented faecal communities.
  • DOI: 10.5458/jag.jag.JAG-2019_0016
    Ashida H, Fujimoto T, Kurihara S, Nakamura M, Komeno M, Huang Y, Katayama T, Kinoshita T, Takegawa K (2020). 1,6-alpha-L-Fucosidases from Bifidobacterium longum subsp. infantis ATCC 15697 Involved in the Degradation of Core-fucosylated N -Glycan.
  • DOI: 10.3390/microorganisms10020203
    Duboux S, Ngom-Bru C, De Bruyn F, Bogicevic B (2022). Phylogenetic, Functional and Safety Features of 1950s B. infantis Strains.
  • DOI: 10.1016/j.foodchem.2022.132532
    Mao H, Li S, Yin B, Lin X, Guo J, Wang T, Voglmeir J, Liu L (2022). The mechanism of probiotic action of human milk N-glycome towards B. infantis ATCC 15697 and identification of the principal functional components.
  • DOI: 10.1016/j.enzmictec.2022.110138
    Bunyatratchata A, Parc AL, de Moura Bell JMLN, Cohen JL, Duman H, Arslan A, Kaplan M, Barile D, Karav S (2022). Release of bifidogenic N-glycans from native bovine colostrum proteins by an endo-beta-N-acetylglucosaminidase.
  • DOI: 10.3168/jds.2023-23591
    Zhang G, He M, Xiao L, Jiao Y, Han J, Li C, Miller MJ, Zhang L (2023). Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses.
  • DOI: 10.1111/1750-3841.16996
    Xie Z, Kim C, Miller MJ, Jin YS (2024). Effects of 2'-fucosyllactose on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage.
  • DOI: 10.3390/foods13091291
    Zhou Y, Liu X, Chen H, Zhao J, Zhang H, Chen W, Yang B (2024). Isolation and Characterisation of Streptococcus spp. with Human Milk Oligosaccharides Utilization Capacity from Human Milk.
  • DOI: 10.1111/1523-1747.ep13076752
    Ishihara K, Hayasaka K, Yamazaki N (1989). Current status of melanoma treatment with interferon, cytokines and other biologic response modifiers in Japan.
  • DOI: 10.1128/jb.178.1.317-320.1996
    Tone-Shimokawa Y, Toida T, Kawashima T (1996). Isolation and structural analysis of polysaccharide containing galactofuranose from the cell walls of Bifidobacterium infantis.
  • DOI: 10.1016/s0168-1605(00)00327-5
    Sun W, Griffiths MW (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads.
  • DOI: 10.1046/j.1365-2672.2001.01317.x
    Perrin S, Warchol M, Grill JP, Schneider F (2001). Fermentations of fructo-oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi-synthetic medium.
  • DOI: 10.1046/j.1472-765x.2002.01224.x
    Warchol M, Perrin S, Grill JP, Schneider F (2002). Characterization of a purified beta-fructofuranosidase from Bifidobacterium infantis ATCC 15697.
  • DOI: 10.1016/j.ijfoodmicro.2007.02.021
    Haros M, Bielecka M, Honke J, Sanz Y (2007). Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697.
  • DOI: 10.1016/j.carres.2012.04.022
    Li L, Liu Y, Wang W, Cheng J, Zhao W, Wang P (2012). A highly efficient galactokinase from Bifidobacterium infantis with broad substrate specificity.
  • DOI: 10.1016/j.carres.2015.04.001
    Guo Y, Fang J, Li T, Li X, Ma C, Wang X, Wang PG, Li L (2015). Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA.
  • DOI: 10.1016/j.ijpharm.2024.123804
    Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA (2024). Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1).
  • DOI: 10.1074/jbc.M111.248138
    Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M (2011). Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
  • DOI: 10.1371/journal.pone.0079735
    Miyauchi E, Ogita T, Miyamoto J, Kawamoto S, Morita H, Ohno H, Suzuki T, Tanabe S (2013). Bifidobacterium longum alleviates dextran sulfate sodium-induced colitis by suppressing IL-17A response: involvement of intestinal epithelial costimulatory molecules.
  • DOI: 10.1016/j.jpsychires.2019.03.017
    Rong H, Xie XH, Zhao J, Lai WT, Wang MB, Xu D, Liu YH, Guo YY, Xu SX, Deng WF, Yang QF, Xiao L, Zhang YL, He FS, Wang S, Liu TB (2019). Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients.
  • DOI: 10.1080/19490976.2021.1973835
    Hirano R, Sakanaka M, Yoshimi K, Sugimoto N, Eguchi S, Yamauchi Y, Nara M, Maeda S, Ami Y, Gotoh A, Katayama T, Iida N, Kato T, Ohno H, Fukiya S, Yokota A, Nishimoto M, Kitaoka M, Nakai H, Kurihara S (2021). Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile.
  • DOI: 10.1016/j.carbpol.2012.05.075
    Prasanna PH, Bell A, Grandison AS, Charalampopoulos D (2012). Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205.
  • DOI: 10.1016/j.ijfoodmicro.2014.01.008
    Landete JM, Peiroten A, Rodriguez E, Margolles A, Medina M, Arques JL (2014). Anaerobic green fluorescent protein as a marker of Bifidobacterium strains.
  • DOI: 10.1007/s10529-015-1802-8
    Montenegro-Rodriguez C, Peiroten A, Sanchez-Jimenez A, Arques JL, Landete JM (2015). Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein.
  • DOI: 10.3389/fmicb.2023.1094671
    Racioppo A, Speranza B, Altieri C, Sinigaglia M, Corbo MR, Bevilacqua A (2023). Ultrasound can increase biofilm formation by Lactiplantibacillus plantarum and Bifidobacterium spp.
  • DOI: 10.1016/j.heliyon.2024.e32342
    Braschi G, Njieukam JA, Gottardi D, Genovese J, Tylewicz U, Patrignani F, Rocculi P (2024). Investigating the potential of yacon (Smallanthus sonchifolius) juice in the development of organic apple-based snacks.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:21064
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license