-
DOI: 10.1128/jb.106.3.739-744.1971
Slapikoff S, Spitzer JL, Vaccaro D
(1971).
Sporulation in Bacillus brevis: studies on protease and protein turnover.
-
DOI: 10.1128/AAC.10.2.265
Vandamme EJ, Demain AL
(1976).
Nutrition of Bacillus brevis ATCC 9999, the producer of gramicidin S.
-
DOI: 10.1128/jb.130.3.1010-1016.1977
Friebel TE, Demain AL
(1977).
Oxygen-dependent inactivation of gramicidin S synthetase in Bacillus brevis.
-
DOI: 10.1111/j.1432-1033.1979.tb13229.x
Marahiel MA, Danders W, Krause M, Kleinkauf H
(1979).
Biological role of gramicidin S in spore functions. Studies on gramicidin-S-negative mutants of Bacillus brevis ATCC9999.
-
DOI: 10.1093/oxfordjournals.jbchem.a131545
Asatani M, Kurahashi K
(1977).
Carbohydrate metabolism in Bacillus brevis ATCC 9999.
-
DOI: 10.1128/jb.172.10.6156-6159.1990
Dingman DW
(1990).
Presence of N6-methyladenine in GATC sequences of Bacillus popilliae and Bacillus lentimorbus KLN2.
-
DOI: 10.1139/m86-042
Demain AL, Agathos SN
(1986).
Studies on in vivo inactivation of gramicidin S synthetase and its retardation.
-
DOI: 10.1128/jb.162.3.1120-1125.1985
Krause M, Marahiel MA, von Dohren H, Kleinkauf H
(1985).
Molecular cloning of an ornithine-activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in Escherichia coli.
-
DOI: 10.1128/AAC.20.4.508
Poirier A, Demain AL
(1981).
Arginine regulation of gramicidin S biosynthesis.
-
DOI: 10.7164/antibiotics.35.615
Nimi O, Kubota H, Sugiyama M
(1982).
Effect of arginine on gramicidin S biosynthesis by Bacillus brevis.
-
DOI: 10.1128/jb.151.3.1466-1472.1982
Kurotsu T, Marahiel MA, Muller KD, Kleinkauf H
(1982).
Characterization of an intracellular serine protease from sporulating cells of Bacillus brevis.
-
DOI: 10.7164/antibiotics.34.323
Marahiel MA, Lurz R, Kleinkauf H
(1981).
Characterization of chromosomal and membrane associated plasmid in Bacillus brevis ATCC 9999.
-
DOI: 10.1016/s0162-0134(00)80201-9
Jack TR
(1980).
The surface active properties and antibacterial activity of the compounds, trans-[Rh(L)4Cl2]Cl . nH2O.
-
DOI: 10.1021/bi00014a017
Stein T, Kluge B, Vater J, Franke P, Otto A, Wittmann-Liebold B
(1995).
Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine.
-
DOI: 10.7164/antibiotics.55.650
Kim WS, Xu L, Souw D, Fang A, Demain AL
(2002).
An unexpected inhibitory effect of rapamycin against germination of spores of Bacillus brevis strain Nagano.
-
DOI: 10.1128/AEM.00881-07
Berditsch M, Afonin S, Ulrich AS
(2007).
The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation.
-
DOI: 10.1128/genomeA.01227-15
Wang JP, Liu B, Liu GH, Ge CB, Xiao RF, Zheng XF, Shi H
(2015).
High-Quality Draft Genome Sequence of Aneurinibacillus migulanus ATCC 9999T (DSM 2895), a Gramicidin S-Producing Bacterium Isolated from Garden Soil.
-
DOI: 10.3762/bjoc.20.39
Ishikawa F, Konno S, Kakeya H, Tanabe G
(2024).
Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells.
-
DOI: 10.1002/cbic.201500481
Ishikawa F, Suzuki T, Dohmae N, Kakeya H
(2015).
A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.
-
DOI: 10.1007/s00284-015-0930-7
Lee K, Lee SS
(2015).
Aneurinibacillus humi sp. nov., Isolated from Soil Collected in Ukraine.
-
DOI: 10.1128/genomeA.00234-15
Alenezi FN, Weitz HJ, Belbahri L, Nidhal J, Luptakova L, Jaspars M, Woodward S
(2015).
Draft Genome Sequence of Aneurinibacillus migulanus NCTC 7096.
-
DOI: 10.1016/j.micres.2015.10.007
Alenezi FN, Rekik I, Belka M, Ibrahim AF, Luptakova L, Jaspars M, Woodward S, Belbahri L
(2015).
Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus.
-
DOI: 10.3389/fmicb.2017.00517
Alenezi FN, Rekik I, Chenari Bouket A, Luptakova L, Weitz HJ, Rateb ME, Jaspars M, Woodward S, Belbahri L
(2017).
Increased Biological Activity of Aneurinibacillus migulanus Strains Correlates with the Production of New Gramicidin Secondary Metabolites.