Strain sc|0021787


This strain is associated as type material for multiple names:

StrainInfo: SI-ID 92182 T

Taxon
Limosilactobacillus reuteri (not Lactobacillus reuteri)
Sample
Adult,intestine (DE)
Cultures (22)
LMG 13557 = ATCC 23272 = CCUG 33624 = JCM 1112 = LMG 9213 = NCFB 2589 = NCIMB 11951 = ATCC 53609 = CIP 101887 = NCDO 2589 = NCIB 11951 = CCRC 14625 = CECT 925 = IFO 15892 = VTT E-92142 = KCTC 3594 = NBRC 15892 = NRRL B-14171 = BCRC 14625 = CCT 3433 = DSM 20016 = CIP 109823
Other Designations (12)
EC-Target Strain 8 = Reuter F275 = LMG 9213QC02/03 = PRSF-L230 = DSMZ 20016 = LMG 9213QC1/99 = PRSF-L168 = LMG 9213TQC2/99 = LMG 9213T QC06/04 = Hansen F275 = PRSF-L166 = F 275
Sequences (27)
Associated Publications (80)
  • DOI: 10.3168/jds.S0022-0302(01)74656-5
    Tungjaroenchai W, Drake MA, White CH (2001). Influence of adjunct cultures on ripening of reduced fat Edam cheeses.
  • DOI: 10.3168/jds.S0022-0302(04)73458-X
    Tungjaroenchai W, White CH, Holmes WE, Drake MA (2004). Influence of adjunct cultures on volatile free fatty acids in reduced-fat Edam cheeses.
  • DOI: 10.1139/w03-003
    Jenkins JK, Courtney PD (2003). Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid.
  • DOI: 10.1007/s11745-006-5030-9
    Irmak S, Dunford NT, Gilliland SE, Banskalieva V, Eisenmenger M (2006). Biocatalysis of linoleic acid to conjugated linoleic acid.
  • DOI: 10.1007/s00284-009-9455-2
    Kim EB, Piao da C, Son JS, Choi YJ (2009). Cloning and characterization of a novel tuf promoter from Lactococcus lactis subsp. lactis IL1403.
  • DOI: 10.1007/s10534-014-9758-z
    Chen PW, Ku YW, Chu FY (2014). Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.
  • DOI: 10.1111/lam.13097
    Paesani C, Salvucci E, Moiraghi M, Fernandez Canigia L, Perez GT (2019). Arabinoxylan from Argentinian whole wheat flour promote the growth of Lactobacillus reuteri and Bifidobacterium breve.
  • Betesho Babrud R, Kasra Kermanshahi R, Motamedi Sede F, Moosavinejad SZ (2019). The effect of Lactobacillus reuteri cell free supernatant on growth and biofilm formation of Paenibacillus larvae.
  • DOI: 10.1099/ijsem.0.004644
    Li F, Cheng CC, Zheng J, Liu J, Quevedo RM, Li J, Roos S, Ganzle MG, Walter J (2021). Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts.
  • DOI: 10.3791/65463
    Duggan A, McMillen D (2023). Methods for Electroporation and Transformation Confirmation in Limosilactobacillus reuteri DSM20016.
  • DOI: 10.1139/w00-070
    Hosoi T, Ametani A, Kiuchi K, Kaminogawa S (2000). Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin.
  • DOI: 10.1111/mmi.12574
    Etzold S, MacKenzie DA, Jeffers F, Walshaw J, Roos S, Hemmings AM, Juge N (2014). Structural and molecular insights into novel surface-exposed mucus adhesins from Lactobacillus reuteri human strains.
  • DOI: 10.1046/j.1472-765x.1998.00418.x
    Mukai T, Kaneko S, Ohori H (1998). Haemagglutination and glycolipid-binding activities of Lactobacillus reuteri.
  • DOI: 10.1128/AEM.02719-07
    Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008). High-Level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112.
  • DOI: 10.1093/dnares/dsn009
    Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O'Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production.
  • DOI: 10.1139/cjm-2014-0734
    Zhang WM, Wang HF, Gao K, Wang C, Liu L, Liu JX (2015). Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells.
  • DOI: 10.3920/BM2017.0162
    Kawahara T, Hanzawa N, Sugiyama M (2018). Effect of Lactobacillus strains on thymus and chemokine expression in keratinocytes and development of atopic dermatitis-like symptoms.
  • DOI: 10.1016/j.jbiosc.2019.07.004
    Ichinose R, Fukuda Y, Yamasaki-Yashiki S, Katakura Y (2019). Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose.
  • DOI: 10.1186/s12934-019-1229-3
    Kristjansdottir T, Bosma EF, Branco Dos Santos F, Ozdemir E, Herrgard MJ, Franca L, Ferreira B, Nielsen AT, Gudmundsson S (2019). A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory.
  • DOI: 10.1016/j.jbiosc.2019.11.009
    Kawai M, Tsuchiya A, Ishida J, Yoda N, Yashiki-Yamasaki S, Katakura Y (2019). Suppression of lactate production in fed-batch culture of some lactic acid bacteria with sucrose as the carbon source.
  • DOI: 10.1007/s13258-020-00978-w
    Son S, Oh JD, Lee SH, Shin D, Kim Y (2020). Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans.
  • DOI: 10.1039/d4fo01061b
    Yue Z, Zhao F, Guo Y, Zhang Y, Chen Y, He L, Li L (2024). Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice.
  • DOI: 10.1016/j.mimet.2021.106234
    Salas-Tovar JA, Escobedo-Garcia S, Olivas GI, Acosta-Muniz CH, Harte F, Sepulveda DR (2021). Method-induced variation in the bacterial cell surface hydrophobicity MATH test.
  • DOI: 10.1111/j.1574-6968.2000.tb09282.x
    Heinemann C, van Hylckama Vlieg JE, Janssen DB, Busscher HJ, van der Mei HC, Reid G (2000). Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131.
  • DOI: 10.1007/BF01575966
    Aleljung P, Shen W, Rozalska B, Hellman U, Ljungh A, Wadstrom T (1994). Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951.
  • DOI: 10.1111/j.1574-6968.1996.tb08505.x
    Roos S, Aleljung P, Robert N, Lee B, Wadstrom T, Lindberg M, Jonsson H (1996). A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system?
  • DOI: 10.1046/j.1472-765x.2003.01390.x
    Rodriguez E, Arques JL, Rodriguez R, Nunez M, Medina M (2003). Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits.
  • DOI: 10.1007/s00253-015-6770-3
    Landete JM, Langa S, Revilla C, Margolles A, Medina M, Arques JL (2015). Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.
  • DOI: 10.1111/jam.13439
    Langa S, Arques JL, Medina M, Landete JM (2017). Coproduction of colicin V and lactic acid bacteria bacteriocins in lactococci and enterococci strains of biotechnological interest.
  • DOI: 10.1007/s00253-021-11537-y
    Langa S, Peiroten A, Arques JL, Landete JM (2021). Evoglow-Pp1 and mCherry proteins: a dual fluorescent labeling system for lactic acid bacteria.
  • DOI: 10.1007/s12275-011-0252-9
    Kang MS, Oh JS, Lee HC, Lim HS, Lee SW, Yang KH, Choi NK, Kim SM (2011). Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria.
  • DOI: 10.1007/s12275-012-1286-3
    Kang MS, Oh JS, Lee SW, Lim HS, Choi NK, Kim SM (2012). Effect of Lactobacillus reuteri on the proliferation of Propionibacterium acnes and Staphylococcus epidermidis.
  • DOI: 10.1007/s12010-009-8721-x
    Jeon JM, Lee HI, Han SH, Chang CS, So JS (2009). Partial purification and characterization of glutaminase from Lactobacillus reuteri KCTC3594.
  • DOI: 10.1111/j.1740-0929.2010.00788.x
    Kawahara T (2010). Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells.
  • DOI: 10.20960/nh.04241
    Reyes Lopez MG, Cavazos Garduno A, Franco Rodriguez NE, Silva Jara JM, Serrano Nino JC (2023). [Assessment of the in vitro effect of intra and extracellular extracts of Lactobacillus against genotoxicity and oxidative stress caused by acrylamide].
  • DOI: 10.1111/j.1365-2672.1988.tb01905.x
    Morelli L, Sarra PG, Bottazzi V (1988). In vivo transfer of pAM beta 1 from Lactobacillus reuteri to Enterococcus faecalis.
  • DOI: 10.1046/j.1365-2672.2001.01405.x
    Curtin AC, De Angelis M, Cipriani M, Corbo MR, McSweeney PL, Gobbetti M (2001). Amino acid catabolism in cheese-related bacteria: selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology.
  • DOI: 10.7717/peerj.4826
    Speranza B, Liso A, Corbo MR (2018). Use of design of experiments to optimize the production of microbial probiotic biofilms.
  • DOI: 10.3390/molecules23102667
    Liu Y, Hui X, Ibrahim SA, Huang W (2018). Increasing Antiradical Activity of Polyphenols from Lotus Seed Epicarp by Probiotic Bacteria Bioconversion.
  • DOI: 10.3168/jds.2020-19120
    Behare PV, Mazhar S, Pennone V, McAuliffe O (2020). Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities.
  • DOI: 10.1007/s11274-022-03514-y
    Behare PV, Ali SA, Mishra VSN, Gomez-Mascaraque LG, McAuliffe O (2023). Fructose-induced topographical changes in fructophilic, pseudofructophilic and non-fructophilic lactic acid bacterial strains with genomic comparison.
  • DOI: 10.1016/S0944-5013(98)80018-9
    Yamato M, Nakada R, Nakamura Y (1998). Release of spirosin associated with potassium phosphate-induced autolysis in Lactobacillus reuteri DSM 20016.
  • DOI: 10.1017/s0022029902005514
    De Angelis M, Curtin AC, McSweeney PL, Faccia M, Gobbetti M (2002). Lactobacillus reuteri DSM 20016: purification and characterization of a cystathionine gamma-lyase and use as adjunct starter in cheesemaking.
  • DOI: 10.1099/mic.0.26530-0
    Wall T, Roos S, Jacobsson K, Rosander A, Jonsson H (2003). Phage display reveals 52 novel extracellular and transmembrane proteins from Lactobacillus reuteri DSM 20016(T).
  • DOI: 10.1016/j.anaerobe.2007.03.001
    Wang HF, Zhu WY, Yao W, Liu JX (2007). DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice.
  • DOI: 10.1128/JB.01535-07
    Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lunsdorf H, Parsons JB, Warren MJ, Prentice MB (2008). Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation.
  • DOI: 10.1007/s12011-009-8519-2
    Ibrahim SA, Alazzeh AY, Awaisheh SS, Song D, Shahbazi A, AbuGhazaleh AA (2009). Enhancement of alpha- and beta-galactosidase activity in Lactobacillus reuteri by different metal ions.
  • DOI: 10.1111/j.1574-6968.2010.01978.x
    Lizier M, Sarra PG, Cauda R, Lucchini F (2010). Comparison of expression vectors in Lactobacillus reuteri strains.
  • DOI: 10.1186/1475-2859-10-61
    Stevens MJ, Vollenweider S, Meile L, Lacroix C (2011). 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production.
  • DOI: 10.1128/AEM.05735-11
    Kralj S, Grijpstra P, van Leeuwen SS, Leemhuis H, Dobruchowska JM, van der Kaaij RM, Malik A, Oetari A, Kamerling JP, Dijkhuizen L (2011). 4,6-alpha-glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70.
  • DOI: 10.1007/s00253-012-3943-1
    Leemhuis H, Dijkman WP, Dobruchowska JM, Pijning T, Grijpstra P, Kralj S, Kamerling JP, Dijkhuizen L (2012). 4,6-alpha-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily.
  • DOI: 10.1016/j.plasmid.2012.08.004
    Chang YC, Huang JY, Chiou MT, Chung TC, Hsu WL, Lin CF (2012). Characterization of a small cryptic plasmid pK50-2 isolated from Lactobacillus reuteri K50.
  • DOI: 10.1186/2193-1801-2-465
    Hayek SA, Shahbazi A, Worku M, Ibrahim SA (2013). Enzymatic activity of Lactobacillus reuteri grown in a sweet potato based medium with the addition of metal ions.
  • DOI: 10.1371/journal.pone.0090208
    Sattler VA, Mohnl M, Klose V (2014). Development of a strain-specific real-time PCR assay for enumeration of a probiotic Lactobacillus reuteri in chicken feed and intestine.
  • DOI: 10.1186/1475-2859-13-76
    Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R (2014). Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
  • DOI: 10.4103/2277-9175.139134
    Salehi R, Savabi O, Kazemi M, Kamali S, Salehi AR, Eslami G, Tahmourespour A (2014). Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf) of Streptococcus mutans.
  • DOI: 10.4014/jmb.1411.11078
    Ricci MA, Russo A, Pisano I, Palmieri L, de Angelis M, Agrimi G (2015). Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016.
  • DOI: 10.1016/j.biortech.2014.12.109
    Sabet-Azad R, Sardari RR, Linares-Pasten JA, Hatti-Kaul R (2015). Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.
  • DOI: 10.3109/09637486.2015.1136905
    Altieri C, Iorio MC, Bevilacqua A, Sinigaglia M (2016). Influence of prebiotics on Lactobacillus reuteri death kinetics under sub-optimal temperatures and pH.
  • DOI: 10.1007/s00253-016-7639-9
    Bhushan B, Tomar SK, Mandal S (2016). Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC.
  • DOI: 10.1007/s00253-016-7903-z
    Bhushan B, Tomar SK, Chauhan A (2016). Techno-functional differentiation of two vitamin B(12) producing Lactobacillus plantarum strains: an elucidation for diverse future use.
  • DOI: 10.1039/c6ob02320g
    Vitale P, Perna FM, Agrimi G, Scilimati A, Salomone A, Cardellicchio C, Capriati V (2016). Asymmetric chemoenzymatic synthesis of 1,3-diols and 2,4-disubstituted aryloxetanes by using whole cell biocatalysts.
  • DOI: 10.1371/journal.pone.0168107
    Chen L, Bromberger PD, Nieuwenhuiys G, Hatti-Kaul R (2016). Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
  • DOI: 10.3390/foods4030318
    Atilola OA, Gyawali R, Aljaloud SO, Ibrahim SA (2015). Use of Phytone Peptone to Optimize Growth and Cell Density of Lactobacillus reuteri.
  • DOI: 10.1021/acs.jafc.7b01663
    Beer F, Urbat F, Steck J, Huch M, Bunzel D, Bunzel M, Kulling SE (2017). Metabolism of Foodborne Heterocyclic Aromatic Amines by Lactobacillus reuteri DSM 20016.
  • DOI: 10.1099/ijsem.0.002044
    Killer J, Pechar R, Svec P, Salmonova H, Svejstil R, Geigerova M, Rada V, Vlkova E, Mekadim C (2017). Lactobacillus caviae sp. nov., an obligately heterofermentative bacterium isolated from the oral cavity of a guinea pig (Cavia aperea f. porcellus).
  • DOI: 10.1007/s13205-017-0974-4
    Susan Aishwarya S, Iyappan S, Vijaya Lakshmi K, Rajnish KN (2017). In silico analysis, molecular cloning, expression and characterization of l-asparaginase gene from Lactobacillus reuteri DSM 20016.
  • DOI: 10.1371/journal.pone.0185734
    Chen L, Hatti-Kaul R (2017). Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1,2-diols: Limits with microcompartment.
  • DOI: 10.1016/j.fm.2017.11.001
    Speranza B, Campaniello D, Monacis N, Bevilacqua A, Sinigaglia M, Corbo MR (2017). Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics.
  • DOI: 10.17113/ftb.55.04.17.5344
    Novotni D, Spoljaric IV, Drakula S, Cukelj N, Voucko B, Scetar M, Galic K, Curic D (2017). Influence of Barley Sourdough and Vacuum Cooling on Shelf Life Quality of Partially Baked Bread.
  • DOI: 10.3389/fmicb.2018.01421
    Asare PT, Greppi A, Stettler M, Schwab C, Stevens MJA, Lacroix C (2018). Decontamination of Minimally-Processed Fresh Lettuce Using Reuterin Produced by Lactobacillus reuteri.
  • DOI: 10.3389/fmicb.2020.01166
    Greppi A, Asare PT, Schwab C, Zemp N, Stephan R, Lacroix C (2020). Isolation and Comparative Genomic Analysis of Reuterin-Producing Lactobacillus reuteri From the Chicken Gastrointestinal Tract.
  • DOI: 10.3389/fmicb.2020.566596
    Campaniello D, Bevilacqua A, Speranza B, Sinigaglia M, Corbo MR (2020). Alginate- and Gelatin-Coated Apple Pieces as Carriers for Bifidobacterium animalis subsp. lactis DSM 10140.
  • DOI: 10.1016/j.fm.2020.103720
    Liang N, Neuzil-Bunesova V, Tejnecky V, Ganzle M, Schwab C (2021). 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri.
  • DOI: 10.1016/j.biortech.2021.125590
    Singh K, Ainala SK, Park S (2021). Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol.
  • DOI: 10.1093/femsle/fnab128
    Lo CI, Dione N, Mbaye A, Gomez PF, Ngom II, Valles C, Alibar S, Lagier JC, Fenollar F, Fournier PE, Raoult D, Diene SM (2021). Limosilactobacillus caccae sp. nov., a new bacterial species isolated from the human gut microbiota.
  • DOI: 10.1016/j.crfs.2021.11.013
    Rodrigues FJ, Cedran MF, Bicas JL, Sato HH (2021). Reuterin-producing Limosilactobacillus reuteri: Optimization of in situ reuterin production in alginate-based filmogenic solutions.
  • DOI: 10.3390/microorganisms10071341
    Smythe P, Efthimiou G (2022). In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health.
  • DOI: 10.1002/bit.28559
    Singh K, Park S (2023). Construction of prophage-free and highly-transformable Limosilactobacillus reuteri strains and their use for production of 1,3-propanediol.
  • DOI: 10.3390/antiox12091678
    Dimitriu L, Constantinescu-Aruxandei D, Preda D, Moraru I, Babeanu NE, Oancea F (2023). The Antioxidant and Prebiotic Activities of Mixtures Honey/Biomimetic NaDES and Polyphenols Show Differences between Honeysuckle and Raspberry Extracts.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:21787
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license