-
DOI: 10.1099/ijs.0.02319-0
Karavaiko GI, Turova TP, Kondrat'eva TF, Lysenko AM, Kolganova TV, Ageeva SN, Muntyan LN, Pivovarova TA
(2003).
Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans.
-
DOI: 10.1128/AEM.70.9.5177-5182.2004
Alvarez S, Jerez CA
(2004).
Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans.
-
DOI: 10.1080/03601234.2019.1710985
Micciche AC, Barabote RD, Dittoe DK, Ricke SC
(2020).
In silico genome analysis of an acid mine drainage species, Acidiphilium multivorum, for potential commercial acetic acid production and biomining.
-
DOI: 10.1128/aem.56.9.2922-2923.1990
Drobner E, Huber H, Stetter KO
(1990).
Thiobacillus ferrooxidans, a facultative hydrogen oxidizer.
-
DOI: 10.1128/jb.178.19.5776-5780.1996
Ohmura N, Tsugita K, Koizumi JI, Saika H
(1996).
Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.
-
DOI: 10.1073/pnas.97.7.3509
Selkov E, Overbeek R, Kogan Y, Chu L, Vonstein V, Holmes D, Silver S, Haselkorn R, Fonstein M
(2000).
Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.
-
DOI: 10.1021/bi992846p
Giudici-Orticoni MT, Leroy G, Nitschke W, Bruschi M
(2000).
Characterization of a new dihemic c(4)-type cytochrome isolated from Thiobacillus ferrooxidans.
-
DOI: 10.1111/j.1574-6968.2002.tb11130.x
Yarzabal A, Brasseur G, Bonnefoy V
(2002).
Cytochromes c of Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s00284-001-0094-5
Heinhorst S, Baker SH, Johnson DR, Davies PS, Cannon GC, Shively JM
(2002).
Two Copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270.
-
Abdel-Fattah YR, Abdel-Fattah WR, Zamilpa R, Pierce JR
(2002).
Numerical modeling of ferrous-ion oxidation rate in Acidithiobacillus ferrooxidans ATCC 23270: optimization of culture conditions through statistically designed experiments.
-
DOI: 10.1016/j.resmic.2004.03.009
Bergamo RF, Novo MT, Verissimo RV, Paulino LC, Stoppe NC, Sato MI, Manfio GP, Prado PI, Garcia O Jr, Ottoboni LM
(2004).
Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis.
-
DOI: 10.1089/omi.2005.9.13
Acosta M, Beard S, Ponce J, Vera M, Mobarec JC, Jerez CA
(2005).
Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins.
-
DOI: 10.1099/mic.0.27476-0
Bruscella P, Cassagnaud L, Ratouchniak J, Brasseur G, Lojou E, Amils R, Bonnefoy V
(2005).
The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms.
-
DOI: 10.1099/mic.0.27581-0
Quatrini R, Lefimil C, Holmes DS, Jedlicki E
(2005).
The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans.
-
DOI: 10.1099/mic.0.2006/000067-0
Bruscella P, Appia-Ayme C, Levican G, Ratouchniak J, Jedlicki E, Holmes DS, Bonnefoy V
(2007).
Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation.
-
DOI: 10.1016/j.abb.2007.03.024
Zeng J, Geng M, Jiang H, Liu Y, Liu J, Qiu G
(2007).
The IscA from Acidithiobacillus ferrooxidans is an iron-sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur.
-
DOI: 10.1007/s10529-007-9491-6
Zeng J, Zhang Y, Liu Y, Zhang X, Xia L, Liu J, Qiu G
(2007).
Expression, purification and characterization of a cysteine desulfurase, IscS, from Acidithiobacillus ferrooxidans.
-
DOI: 10.1016/j.jbiotec.2007.08.030
Kanao T, Kamimura K, Sugio T
(2007).
Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s00284-007-9025-4
Zeng J, Huang X, Liu Y, Liu J, Qiu G
(2007).
Expression, purification, and characterization of a [Fe2S2] cluster containing ferredoxin from Acidithiobacillus ferrooxidans.
-
DOI: 10.1074/mcp.M700042-MCP200
Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA
(2007).
Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.
-
DOI: 10.1016/s1001-0742(07)60187-9
Masafumi T, Masanori F
(2007).
Penetration analysis of elements and bioleaching treatment of spent refractory for recycling.
-
DOI: 10.1271/bbb.70253
Sugio T, Taha TM, Kanao T, Takeuchi F
(2007).
Increase in Fe2+-producing activity during growth of Acidithiobacillus ferrooxidans ATCC23270 on sulfur.
-
DOI: 10.1007/s10529-007-9612-2
Zeng J, Jiang H, Liu Y, Liu J, Qiu G
(2007).
Expression, purification and characterization of a high potential iron-sulfur protein from Acidithiobacillus ferrooxidans.
-
DOI: 10.1128/AEM.02019-07
Auernik KS, Maezato Y, Blum PH, Kelly RM
(2007).
The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.
-
DOI: 10.1128/AEM.02101-07
Vera M, Pagliai F, Guiliani N, Jerez CA
(2008).
The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
-
DOI: 10.1271/bbb.70743
Sugio T, Wakabayashi M, Kanao T, Takeuchi F
(2008).
Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile.
-
DOI: 10.1016/j.resmic.2008.04.002
Knegt FH, Mello LV, Reis FC, Santos MT, Vicentini R, Ferraz LF, Ottoboni LM
(2008).
ribB and ribBA genes from Acidithiobacillus ferrooxidans: expression levels under different growth conditions and phylogenetic analysis.
-
DOI: 10.1007/s00284-008-9170-4
Zeng J, Jiang H, Geng M, Wang Y, Zhang X, Liu J, Qiu G
(2008).
In vitro assembly of [Fe4S4] cluster in high potential iron-sulfur protein from Acidithiobacillus ferrooxidans.
-
DOI: 10.1271/bbb.80070
Sugio T, Fujii M, Ninomiya Y, Kanao T, Negishi A, Takeuchi F
(2008).
Reduction of Hg2+ with reduced mammalian cytochrome c by cytochrome c oxidase purified from a mercury-resistant acidithiobacillus ferrooxidans strain, MON-1.
-
DOI: 10.1002/bit.260410611
Ohmura N, Kitamura K, Saiki H
(1993).
Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression.
-
DOI: 10.1128/AEM.00787-08
Taha TM, Kanao T, Takeuchi F, Sugio T
(2008).
Reconstitution of iron oxidase from sulfur-grown Acidithiobacillus ferrooxidans.
-
Zeng J, Zhang K, Liu J, Qiu G
(2008).
Expression, purification, and characterization of iron-sulfur cluster assembly regulator IscR from Acidithiobacillus ferrooxidans.
-
DOI: 10.4014/jmb.0700.737
Wang W, Xiao S, Chao J, Chen Q, Qiu G, Liu X
(2008).
Regulation of CO2 fixation gene expression in Acidithiobacillus ferrooxidans ATCC 23270 by Lix984n shock.
-
DOI: 10.1186/1471-2164-9-597
Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R 2nd, Eisen JA, Holmes DS
(2008).
Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications.
-
DOI: 10.1007/s00284-008-9330-6
He H, Zhang CG, Xia JL, Peng AA, Yang Y, Jiang HC, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ
(2008).
Investigation of elemental sulfur speciation transformation mediated by Acidithiobacillus ferrooxidans.
-
DOI: 10.1002/bit.22183
Hold C, Andrews BA, Asenjo JA
(2009).
A stoichiometric model of Acidithiobacillus ferrooxidans ATCC 23270 for metabolic flux analysis.
-
Liu X, Wu H, Liu W, Li S
(2009).
[Response of genes for synthesizing the magnetic of Acidithiobacillus ferrooxidans to different concentration of Fe2+ stress].
-
Xiao S, Chao J, Wang W, Fang F, Qui G, Liu X
(2009).
Real-time PCR analysis of the heat-shock response of Acidithiobacillus ferrooxidans ATCC 23270.
-
DOI: 10.1139/w08-158
Luo H, Shen L, Yin H, Li Q, Chen Q, Luo Y, Liao L, Qiu G, Liu X
(2009).
Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray.
-
DOI: 10.1271/bbb.90036
Sugio T, Taha TM, Takeuchi F
(2009).
Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidans ATCC 23270 cells.
-
DOI: 10.1107/S1744309109027535
Zhang Y, Cherney MM, Solomonson M, Liu J, James MN, Weiner JH
(2009).
Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans.
-
DOI: 10.1186/1471-2164-10-394
Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V
(2009).
Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s00284-009-9476-x
Dai Y, Liu J, Zheng C, Wu A, Zeng J, Qiu G
(2009).
Cys92, Cys101, Cys197, and Cys203 are crucial residues for coordinating the iron-sulfur cluster of RhdA from Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s00284-009-9565-x
Zheng C, Nie L, Qian L, Wang Z, Liu G, Liu J
(2009).
K30, H150, and H168 are essential residues for coordinating pyridoxal 5'-phosphate of O-acetylserine sulfhydrylase from Acidithiobacillus ferrooxidans.
-
DOI: 10.1016/j.micres.2010.03.004
Mykytczuk NC, Trevors JT, Ferroni GD, Leduc LG
(2010).
Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.
-
DOI: 10.1271/bbb.100446
Sugio T, Ako A, Takeuchi F
(2010).
Sulfite oxidation catalyzed by aa(3)-type cytochrome c oxidase in Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s00253-011-3494-x
Orellana LH, Jerez CA
(2011).
A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.
-
DOI: 10.1007/s10534-011-9484-8
Hodar C, Moreno P, di Genova A, Latorre M, Reyes-Jara A, Maass A, Gonzalez M, Cambiazo V
(2011).
Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.
-
DOI: 10.3389/fmicb.2011.00079
Beard S, Paradela A, Albar JP, Jerez CA
(2011).
Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase.
-
DOI: 10.1111/j.1472-765X.2011.03180.x
Ruiz LM, Castro M, Barriga A, Jerez CA, Guiliani N
(2011).
The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals.
-
DOI: 10.1186/1471-2180-11-259
Ribeiro DA, Bem LE, Vicentini R, Ferraz LF, Murakami MT, Ottoboni LM
(2011).
The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling.
-
DOI: 10.1128/AEM.07230-11
Wang H, Liu X, Liu S, Yu Y, Lin J, Lin J, Pang X, Zhao J
(2011).
Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant.
-
DOI: 10.1007/s00284-012-0117-4
Zheng C, Li Y, Nie L, Qian L, Cai L, Liu J
(2012).
Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.
-
DOI: 10.1007/s00253-012-4271-1
Li Y, Huang S, Zhang X, Huang T, Li H
(2012).
Cloning, expression, and functional analysis of molecular motor pilT and pilU genes of type IV pili in Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s11274-011-0903-3
Zhou Z, Fang Y, Li Q, Yin H, Qin W, Liang Y, Li Q, Li N, Liu X, Qiu G, Liu X
(2011).
Global transcriptional analysis of stress-response strategies in Acidithiobacillus ferrooxidans ATCC 23270 exposed to organic extractant--Lix984n.
-
DOI: 10.6026/97320630008695
Jaramillo ML, Abanto M, Quispe RL, Calderon J, Del Valle LJ, Talledo M, Ramirez P
(2012).
Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli.
-
DOI: 10.1128/AEM.02251-12
Kikumoto M, Nogami S, Kanao T, Takada J, Kamimura K
(2012).
Tetrathionate-forming thiosulfate dehydrogenase from the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans.
-
DOI: 10.1002/pmic.201200386
Vera M, Krok B, Bellenberg S, Sand W, Poetsch A
(2013).
Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite.
-
DOI: 10.1007/s12011-012-9589-0
Hu Q, Wu X, Jiang Y, Liu Y, Liang Y, Liu X, Yin H, Baba N
(2013).
Differential gene expression and bioinformatics analysis of copper resistance gene afe_1073 in Acidithiobacillus ferrooxidans.
-
DOI: 10.1002/jobm.201200300
Li Y, Li H
(2013).
Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.
-
DOI: 10.1159/000346669
Bustamante P, Covarrubias PC, Levican G, Katz A, Tapia P, Holmes D, Quatrini R, Orellana O
(2013).
ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.
-
Xie XY, Sun PD, Lou JQ, Guo MX, Ma WG
(2013).
[Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].
-
DOI: 10.1007/s10529-013-1316-1
Xia LX, Shen Z, Vargas T, Sun WJ, Ruan RM, Xie ZD, Qiu GZ
(2013).
Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations.
-
DOI: 10.1021/pr4009833
Almarcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA
(2014).
New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.
-
DOI: 10.4067/S0716-97602013000400008
Navarro CA, von Bernath D, Jerez CA
(2013).
Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
-
DOI: 10.1007/s00253-014-5830-4
Wang H, Liu S, Liu X, Li X, Wen Q, Lin J
(2014).
Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp.
-
DOI: 10.1016/j.resmic.2014.07.005
Almarcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA
(2014).
Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.
-
DOI: 10.1371/journal.pone.0112226
Bustamante P, Tello M, Orellana O
(2014).
Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans.
-
DOI: 10.1128/AEM.02810-15
Navarro CA, von Bernath D, Martinez-Bussenius C, Castillo RA, Jerez CA
(2015).
Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.
-
DOI: 10.1007/s10534-015-9893-1
Nie ZY, Liu HC, Xia JL, Yang Y, Zhen XJ, Zhang LJ, Qiu GZ
(2015).
Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.
-
DOI: 10.1093/gbe/evv254
Tran TT, Belahbib H, Bonnefoy V, Talla E
(2015).
A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes.
-
DOI: 10.1264/jsme2.ME16086
Ueoka N, Kouzuma A, Watanabe K
(2016).
Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds.
-
DOI: 10.1007/s10295-016-1827-6
Ma L, Li Q, Shen L, Feng X, Xiao Y, Tao J, Liang Y, Yin H, Liu X
(2016).
Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays.
-
DOI: 10.3389/fmicb.2016.01365
Mamani S, Moinier D, Denis Y, Soulere L, Queneau Y, Talla E, Bonnefoy V, Guiliani N
(2016).
Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.
-
DOI: 10.1080/15476286.2017.1349049
Alamos P, Tello M, Bustamante P, Gutierrez F, Shmaryahu A, Maldonado J, Levican G, Orellana O
(2017).
Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium.
-
DOI: 10.1007/s00284-018-1453-9
Ai C, Liang Y, Miao B, Chen M, Zeng W, Qiu G
(2018).
Identification and Analysis of a Novel Gene Cluster Involves in Fe(2+) Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.
-
DOI: 10.1016/j.meteno.2016.03.003
Campodonico MA, Vaisman D, Castro JF, Razmilic V, Mercado F, Andrews BA, Feist AM, Asenjo JA
(2016).
Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications.
-
DOI: 10.3390/genes9070347
Oetiker N, Norambuena R, Martinez-Bussenius C, Navarro CA, Amaya F, Alvarez SA, Paradela A, Jerez CA
(2018).
Possible Role of Envelope Components in the Extreme Copper Resistance of the Biomining Acidithiobacillus ferrooxidans.
-
DOI: 10.3389/fmicb.2019.00030
Flores-Rios R, Moya-Beltran A, Pareja-Barrueto C, Arenas-Salinas M, Valenzuela S, Orellana O, Quatrini R
(2019).
The Type IV Secretion System of ICEAfe1: Formation of a Conjugative Pilus in Acidithiobacillus ferrooxidans.
-
DOI: 10.1016/j.chemosphere.2020.126080
Wang X, Li Q, Liao Q, Yan Y, Xia J, Lin Q, Wang Q, Liang Y
(2020).
Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans.
-
DOI: 10.1007/s11274-020-02855-w
Duarte Briceno PG, Caicedo Pineda GA, Marquez Godoy MA
(2020).
Early reprecipitation of sulfate salts in coal biodesulfurization processes using acidophilic chemolithotrophic bacteria.
-
DOI: 10.1016/j.jprot.2020.103874
Vargas-Straube MJ, Beard S, Norambuena R, Paradela A, Vera M, Jerez CA
(2020).
High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur.
-
DOI: 10.1016/j.bbrc.2020.09.088
Zhang L, Wang T, Yang Y, Yang JM
(2020).
A regulation mechanism for the promoter region of the pet II operon in Acidithiobacillus ferrooxidans ATCC23270.
-
DOI: 10.3390/microorganisms11041028
Liu Y, Gu C, Liu H, Zhou Y, Nie Z, Wang Y, Chen L, Xia J
(2023).
Fe/S Redox-Coupled Mercury Transformation Mediated by Acidithiobacillus ferrooxidans ATCC 23270 under Aerobic and/or Anaerobic Conditions.
-
DOI: 10.1016/j.resmic.2023.104115
Khaleque HN, Nazem-Bokaee H, Gumulya Y, Carlson RP, Kaksonen AH
(2023).
Simulating compatible solute biosynthesis using a metabolic flux model of the biomining acidophile, Acidithiobacillus ferrooxidans ATCC 23270.
-
DOI: 10.1016/j.jbiotec.2024.01.017
Claudia MV, Javiera AA, Sebastian NS, Jose FR, Gloria L
(2024).
Interplay between desiccation and oxidative stress responses in iron-oxidizing acidophilic bacteria.
-
DOI: 10.1016/j.jes.2023.12.006
Chen L, Wang Y, Liu H, Zhou Y, Nie Z, Xia J, Shu W
(2023).
Different fates of Sb(III) and Sb(V) during the formation of jarosite mediated by Acidithiobacillus ferrooxidans.
-
DOI: 10.3389/fmicb.2019.00592
Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M
(2019).
Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite.