Strain sc|0023311


Strain numbers

2.4.1 = ATCC 17023 = ATH 2.4.1. = CCUG 31486 = CECT 300 = CIP 60.6 = DSM 158 = IFO 12203 = JCM 6121 = LMG 2827 = NBRC 12203 = Van Niel's ATH 2.4.1

StrainInfo: SI-ID 43566 T

Taxon
Cereibacter sphaeroides (not Rhodopseudomonas sphaeroides)
Cultures (23)
LMG 2827 = ATCC 11167 = ATCC 14690 = ATCC 17023 = CECT 300 = IFO 12203 = NCIB 8253 = NCIB 8287 = ATCC 55304 = CCUG 31486 = IAM 14237 = NCIMB 8253 = NCIMB8287 = CIP 60.6 = KCTC 1434 = NBRC 12203 = ATCC BAA-808 = BCRC 16407 = CCRC 16407 = JCM 6121 = CGMCC 1.1737 = CGMCC 1.3368 = DSM 158
Other Designations (12)
van Niel ATH.2.4.1. = strain Ewart original = 2.4.1 = Van Niel's ATH 2.4.1 = HMSATH.2.4.1 = Ewart = DSMZ 158 = CCTM La 3647 = original = Original ATCC11167 = Ewart original = ATH 2.4.1
Sequences (17)
Associated Publications (21)
  • DOI: 10.1016/0378-1097(92)90476-5
    Hustede E, Steinbuchel A, Schlegel HG (1992). Cloning of poly(3-hydroxybutyric acid) synthase genes of Rhodobacter sphaeroides and Rhodospirillum rubrum and heterologous expression in Alcaligenes eutrophus.
  • DOI: 10.1111/j.1574-695X.1994.tb00499.x
    Kirikae T, Schade FU, Kirikae F, Qureshi N, Takayama K, Rietschel ET (1994). Diphosphoryl lipid A derived from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 is a potent competitive LPS inhibitor in murine macrophage-like J774.1 cells.
  • DOI: 10.1006/jmbi.1993.1246
    Buchanan SK, Fritzsch G, Ermler U, Michel H (1993). New crystal form of the photosynthetic reaction centre from Rhodobacter sphaeroides of improved diffraction quality.
  • DOI: 10.1371/journal.pone.0086830
    Erbakan M, Shen YX, Grzelakowski M, Butler PJ, Kumar M, Curtis WR (2014). Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides.
  • DOI: 10.1007/s12010-016-2005-z
    Liu S, Zhang G, Li J, Li X, Zhang J (2016). Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.
  • DOI: 10.1186/s12934-021-01695-z
    Yang Y, Li L, Sun H, Li Z, Qi Z, Liu X (2021). Improving CoQ(10) productivity by strengthening glucose transmembrane of Rhodobacter sphaeroides.
  • DOI: 10.1007/s002030050321
    Sturgis JN, Niedermann RA (1996). The effect of different levels of the B800-850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides.
  • DOI: 10.1111/j.1432-1033.1997.t01-1-00564.x
    Babic S, Hunter CN, Rakhlin NJ, Simons RW, Phillips-Jones MK (1997). Molecular characterisation of the pifC gene encoding translation initiation factor 3, which is required for normal photosynthetic complex formation in Rhodobacter sphaeroides NCIB 8253.
  • DOI: 10.1016/j.febslet.2006.04.079
    Potter CA, Jeong EL, Williamson MP, Henderson PJ, Phillips-Jones MK (2006). Redox-responsive in vitro modulation of the signalling state of the isolated PrrB sensor kinase of Rhodobacter sphaeroides NCIB 8253.
  • DOI: 10.3923/pjbs.2009.1462.1467
    Alalayah WM, Kalil MS, Kadhum AA, Jahim JM, Jaapar SZ, Alauj NM (2009). Bio-hydrogen production using a two-stage fermentation process.
  • DOI: 10.3923/pjbs.2009.1253.1259
    Jaapar SZ, Kalil MS, Anuar N (2009). The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253.
  • DOI: 10.3390/microorganisms10112197
    Iwai R, Uchida S, Yamaguchi S, Sonoda F, Tsunoda K, Nagata H, Nagata D, Koga A, Goto M, Maki TA, Hayashi S, Yamamoto S, Miyasaka H (2022). Effects of Seed Bio-Priming by Purple Non-Sulfur Bacteria (PNSB) on the Root Development of Rice.
  • DOI: 10.3390/microorganisms11071676
    Iwai R, Uchida S, Yamaguchi S, Nagata D, Koga A, Hayashi S, Yamamoto S, Miyasaka H (2023). Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the Gene Expression of Rice Root.
  • DOI: 10.1042/bj3310897
    Reyes F, Gavira M, Castillo F, Moreno-Vivian C (1998). Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster.
  • DOI: 10.1074/jbc.M406502200
    Olmo-Mira MF, Gavira M, Richardson DJ, Castillo F, Moreno-Vivian C, Roldan MD (2004). NapF is a cytoplasmic iron-sulfur protein required for Fe-S cluster assembly in the periplasmic nitrate reductase.
  • DOI: 10.1111/j.1365-2958.1996.tb02475.x
    Reyes F, Roldan MD, Klipp W, Castillo F, Moreno-Vivian C (1996). Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases.
  • DOI: 10.1128/JB.184.6.1693-1702.2002
    Gavira M, Roldan MD, Castillo F, Moreno-Vivian C (2002). Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158.
  • DOI: 10.1099/ijs.0.65642-0
    Arunasri K, Venkata Ramana V, Sproer C, Sasikala Ch, Ramana ChV (2008). Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth.
  • DOI: 10.1099/ijs.0.011718-0
    Girija KR, Sasikala C, Ramana CV, Sproer C, Takaichi S, Thiel V, Imhoff JF (2009). Rhodobacter johrii sp. nov., an endospore-producing cryptic species isolated from semi-arid tropical soils.
  • DOI: 10.1016/j.biortech.2014.10.061
    Krujatz F, Hartel P, Helbig K, Haufe N, Thierfelder S, Bley T, Weber J (2014). Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation.
  • DOI: 10.1002/bit.25667
    Krujatz F, Illing R, Krautwer T, Liao J, Helbig K, Goy K, Opitz J, Cuniberti G, Bley T, Weber J (2015). Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:23311
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license