-
DOI: 10.1128/aem.58.5.1484-1489.1992
Harris LJ, Fleming HP, Klaenhammer TR
(1992).
Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain.
-
DOI: 10.1128/AEM.65.2.599-605.1999
Leisner JJ, Pot B, Christensen H, Rusul G, Olsen JE, Wee BW, Muhamad K, Ghazali HM
(1999).
Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient.
-
DOI: 10.1016/j.syapm.2006.01.013
Turner MS, Waldherr F, Loessner MJ, Giffard PM
(2006).
Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria.
-
DOI: 10.1016/j.syapm.2008.05.004
Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R
(2008).
Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T).
-
DOI: 10.1186/1471-2180-14-87
Ueda S, Nomoto R, Yoshida K, Osawa R
(2014).
Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus.
-
DOI: 10.1016/j.foodchem.2017.01.052
Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I, Chondrou P, Fournomiti M, Galanis A, Bezirtzoglou E
(2017).
Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese.
-
DOI: 10.1038/s41598-017-02806-w
Daisley BA, Trinder M, McDowell TW, Welle H, Dube JS, Ali SN, Leong HS, Sumarah MW, Reid G
(2017).
Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model.
-
DOI: 10.3389/fped.2020.572633
Romyasamit C, Thatrimontrichai A, Aroonkesorn A, Chanket W, Ingviya N, Saengsuwan P, Singkhamanan K
(2020).
Enterococcus faecalis Isolated From Infant Feces Inhibits Toxigenic Clostridioides (Clostridium) difficile.
-
DOI: 10.3390/microorganisms9051013
Arellano-Ayala K, Lim J, Yeo S, Bucheli JEV, Todorov SD, Ji Y, Holzapfel WH
(2021).
Rehydration before Application Improves Functional Properties of Lyophilized Lactiplantibacillus plantarum HAC03.
-
DOI: 10.1016/j.fochx.2023.100682
Zhao Y, Li Q, Wang M, Wang Y, Piao C, Yu H, Liu J, Li Z
(2023).
Structural characterization of polysaccharides after fermentation from Ganoderma lucidum and its antioxidant activity in HepG2 cells induced by H(2)O(2).
-
DOI: 10.3389/fmicb.2023.1201201
Abou Elez RMM, Elsohaby I, Al-Mohammadi AR, Seliem M, Tahoun ABMB, Abousaty AI, Algendy RM, Mohamed EAA, El-Gazzar N
(2023).
Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women.
-
DOI: 10.1128/jb.178.3.575-582.1996
Glaasker E, Konings WN, Poolman B
(1996).
Osmotic regulation of intracellular solute pools in Lactobacillus plantarum.
-
DOI: 10.1007/s002849900033
Van Reenen CA, Dicks LM
(1996).
Evaluation of numerical analysis of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus plantarum and Lactobacillus pentosus.
-
DOI: 10.1128/AEM.65.11.4746-4752.1999
Hao Z, Chen S, Wilson DB
(1999).
Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum.
-
DOI: 10.1016/j.ijfoodmicro.2004.01.014
Elegado FB, Guerra MA, Macayan RA, Mendoza HA, Lirazan MB
(2004).
Spectrum of bacteriocin activity of Lactobacillus plantarum BS and fingerprinting by RAPD-PCR.
-
DOI: 10.1111/j.1472-765X.2009.02610.x
Sreekumar R, Al-Attabi Z, Deeth HC, Turner MS
(2009).
Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine.
-
DOI: 10.1099/ijsem.0.000636
Mao Y, Chen M, Horvath P
(2015).
Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.
-
DOI: 10.1007/s00284-016-1087-8
Wang P, Wu Z, Wu J, Pan D, Zeng X, Cheng K
(2016).
Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.
-
DOI: 10.1016/j.ijfoodmicro.2017.10.011
Turpin W, Weiman M, Guyot JP, Lajus A, Cruveiller S, Humblot C
(2017).
The genomic and transcriptomic basis of the potential of Lactobacillus plantarum A6 to improve the nutritional quality of a cereal based fermented food.
-
DOI: 10.3168/jds.2017-13323
Zhang F, Gao J, Wang B, Huo D, Wang Z, Zhang J, Shao Y
(2018).
Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum.
-
DOI: 10.1371/journal.pone.0196231
Wang W, He J, Pan D, Wu Z, Guo Y, Zeng X, Lian L
(2018).
Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress.
-
DOI: 10.1039/c8fo01331d
Marcial-Coba MS, Cieplak T, Cahu TB, Blennow A, Knochel S, Nielsen DS
(2018).
Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage.
-
DOI: 10.3390/foods8010004
Mantzourani I, Kazakos S, Terpou A, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Plessas S
(2018).
Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice.
-
DOI: 10.3390/molecules24010051
Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M
(2018).
Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917.
-
DOI: 10.3168/jds.2018-15410
Cao P, Wu L, Wu Z, Pan D, Zeng X, Guo Y, Lian L
(2019).
Effects of oligosaccharides on the fermentation properties of Lactobacillus plantarum.
-
DOI: 10.1007/s12010-019-02977-4
Mantzourani I, Terpou A, Alexopoulos A, Kimbaris A, Bezirtzoglou E, Koutinas AA, Plessas S
(2019).
Production of a Potentially Synbiotic Pomegranate Beverage by Fermentation with Lactobacillus plantarum ATCC 14917 Adsorbed on a Prebiotic Carrier.
-
DOI: 10.1002/jsfa.9945
Joghataei M, Shahidi F, Pouladfar G, Mortazavi SA, Ghaderi A
(2019).
Probiotic potential comparison of Lactobacillus strains isolated from Iranian traditional food products and human feces with standard probiotic strains.
-
DOI: 10.1007/s12602-019-09620-y
Arellano K, Vazquez J, Park H, Lim J, Ji Y, Kang HJ, Cho D, Jeong HW, Holzapfel WH
(2020).
Safety Evaluation and Whole-Genome Annotation of Lactobacillus plantarum Strains from Different Sources with Special Focus on Isolates from Green Tea.
-
DOI: 10.1099/ijsem.0.004121
Diaz M, Sayavedra L, Atter A, Mayer MJ, Saha S, Amoa-Awua W, Narbad A
(2020).
Lactobacillus garii sp. nov., isolated from a fermented cassava product.
-
DOI: 10.1099/ijsem.0.004141
Li TT, Liu DD, Fu ML, Gu CT
(2020).
Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later heterotypic synonym of Lactobacillus micheneri McFrederick et al. 2018, elevation of Lactobacillus plantarum subsp. argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee (Apis mellifera).
-
DOI: 10.1002/jobm.202000203
Wu L, Wang W, Wu Z, Pan D, Zeng X, Guo Y, Lian L
(2020).
Effect of acid and alkali stress on extracellular metabolite profile of Lactobacillus plantarum ATCC 14917.
-
DOI: 10.1007/s00253-020-10693-x
Hassan A, Din AU, Zhu Y, Zhang K, Li T, Wang Y, Xu S, Lei H, Yu X, Wang G
(2020).
Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE(-/-) mice through modulation of proinflammatory cytokines and oxidative stress.
-
DOI: 10.1016/j.micpath.2020.104481
Karimi N, Jabbari V, Nazemi A, Ganbarov K, Karimi N, Tanomand A, Karimi S, Abbasi A, Yousefi B, Khodadadi E, Kafil HS
(2020).
Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay.
-
DOI: 10.3168/jds.2020-18884
Jia R, Zhang F, Song Y, Lou Y, Zhao A, Liu Y, Peng H, Hui Y, Ren R, Wang B
(2020).
Physicochemical and textural characteristics and volatile compounds of semihard goat cheese as affected by starter cultures.
-
DOI: 10.1002/jsfa.10976
Luo X, Li M, Zhang H, Yan D, Ji S, Wu R, Chen Y
(2021).
Comparative proteomic analysis of three Lactobacillus plantarum strains under salt stress by iTRAQ.
-
Venditti N, Vergalito F, Magnifico I, Cutuli MA, Pietrangelo L, Cozzolino A, Angiolillo A, Succi M, Petronio GP, Di Marco R
(2020).
The Lepidoptera Galleria mellonella "in vivo" model: a preliminary pilot study on oral administration of Lactobacillus plantarum (now Lactiplantibacillus plantarum).
-
DOI: 10.3390/microorganisms9040728
Qian Z, Zhu H, Zhao D, Yang P, Gao F, Lu C, Yin Y, Kan S, Chen D
(2021).
Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis.
-
DOI: 10.1016/j.ijfoodmicro.2021.109382
Gagnon M, Goulet C, LaPointe G, Chouinard PY, Roy D
(2021).
Effect of two thermoresistant non-starter lactic acid bacteria strains on volatilome profile during Cheddar ripening simulation.
-
DOI: 10.1007/s12088-021-00983-x
Pan H, Zhan J, Yang H, Wang C, Liu H, Zhou H, Zhou H, Lu X, Su X, Tian Y
(2021).
Improving the Acid Resistance of Tannase TanBLp (AB379685) from Lactobacillus plantarum ATCC14917(T) by Site-Specific Mutagenesis.
-
DOI: 10.1007/s12275-022-2221-x
Kwon CY, Choi KJ, Yong D, Kim JE, Yoon SS
(2022).
Isolation of a novel Lactiplantibacillus plantarum strain resistant to nitrite stress and its transcriptome analysis.
-
DOI: 10.3390/ani13030384
Li Z, Li F, Kharazian ZA, Guo X
(2023).
Effect of Inoculating Two Bacteriocin-Producing Lactiplantibacillus plantarum Strains at Ensiling on In Vitro Rumen Fermentation and Methane Emissions of Alfalfa Silage with Two Dry Matter Contents.
-
DOI: 10.3390/ijms24031986
Liang J, Zhou Y, Tang G, Wu R, Lin H
(2023).
Exploration of the Main Antibiofilm Substance of Lactobacillus plantarum ATCC 14917 and Its Effect against Streptococcus mutans.
-
DOI: 10.4014/jmb.2211.11016
Lee Y, Jaikwang N, Kim SK, Jeong J, Sukhoom A, Kim JH, Kim W
(2023).
Characterization of a Potential Probiotic Lactiplantibacillus plantarum LRCC5310 by Comparative Genomic Analysis and its Vitamin B(6) Production Ability.
-
DOI: 10.3390/antiox12051113
Plessas S, Mantzourani I, Alexopoulos A, Alexandri M, Kopsahelis N, Adamopoulou V, Bekatorou A
(2023).
Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice.
-
DOI: 10.3389/fmicb.2023.1146672
Wen X, Liu H, Luo X, Lui L, Fan J, Xing Y, Wang J, Qiao X, Li N, Wang G
(2023).
Supplementation of Lactobacillus plantarum ATCC14917 mitigates non-alcoholic fatty liver disease in high-fat-diet-fed rats.
-
DOI: 10.3390/ph16081112
Sodre MTC, Ferraz FA, Alencar AKV, Silva KF, Silva DHDS, Silva LDS, Araujo Carneiro JSDS, Monteiro CA, Silva LCN, Monteiro AS
(2023).
The Potential of Lactiplantibacillus plantarum ATCC 14917 in the Development of Alginate-Based Gel Formulations with Anti-Staphylococcus aureus Properties.
-
DOI: 10.1016/j.gene.2023.147823
Liu Y, Zhang R, Wang B, Song S, Zhang F
(2023).
Evaluation of penicillin-resistance and probiotic traits in Lactobacillus plantarum during laboratory evolution.
-
DOI: 10.3390/foods13010111
Plessas S, Mantzourani I, Terpou A, Bekatorou A
(2023).
Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice.
-
DOI: 10.1007/s10068-023-01450-7
Lee K, Lee D, Lee G, Lee W, Lee KG
(2023).
Antibacterial, antioxidant activities of lactic acid bacteria-bioconversioned almond extract.
-
DOI: 10.1007/s11274-024-04010-1
Hassan A, Luqman A, Zhang K, Ullah M, Din AU, Xiaoling L, Wang G
(2024).
Impact of Probiotic Lactiplantibacillus plantarum ATCC 14917 on atherosclerotic plaque and its mechanism.
-
DOI: 10.1186/s12866-024-03385-3
Zhong Y, Guo J, Zheng Y, Lin H, Su Y
(2024).
Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress.
-
DOI: 10.1128/AEM.01864-14
Wang L, Cai Y, Zhu L, Guo H, Yu B
(2014).
Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.
-
DOI: 10.1111/jfbc.13262
Reque PM, Pinilla CMB, Tinello F, Corich V, Lante A, Giacomini A, Brandelli A
(2020).
Biochemical and functional properties of wheat middlings bioprocessed by lactic acid bacteria.
-
DOI: 10.1002/jsfa.6385
Starzynska-Janiszewska A, Stodolak B, Mickowska B
(2013).
Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds.
-
DOI: 10.1093/femsle/fnx177
da Silva FKP, Bruck DW, Bruck WM
(2017).
Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.
-
DOI: 10.1016/j.foodchem.2019.01.189
Markkinen N, Laaksonen O, Nahku R, Kuldjarv R, Yang B
(2019).
Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices.
-
DOI: 10.3390/nu14245212
Riezu-Boj JI, Barajas M, Perez-Sanchez T, Pajares MJ, Arana M, Milagro FI, Urtasun R
(2022).
Lactiplantibacillus plantarum DSM20174 Attenuates the Progression of Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Metabolic Risk Factors, and Attenuating Adipose Inflammation.
-
DOI: 10.3389/fmicb.2023.1296608
Poscente V, Di Gregorio L, Costanzo M, Nobili C, Bernini R, Garavaglia L, Bevivino A
(2023).
Lactiplantibacillus plantarum monolayer enhanced bactericidal action of carvacrol: biofilm inhibition of viable foodborne pathogens and spoilage microorganisms.
-
DOI: 10.1007/s12010-024-04861-2
Chaitanyakumar A, Somu P, Srinivasan R
(2024).
Expression and Immobilization of Tannase for Tannery Effluent Treatment from Lactobacillus plantarum and Staphylococcus lugdunensis: A Comparative Study.
-
DOI: 10.1016/j.fm.2009.04.001
Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N
(2009).
Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149.
-
DOI: 10.1111/j.1348-0421.2009.00189.x
Hirose Y, Murosaki S, Fujiki T, Yamamoto Y, Yoshikai Y, Yamashita M
(2010).
Lipoteichoic acids on Lactobacillus plantarum cell surfaces correlate with induction of interleukin-12p40 production.
-
DOI: 10.1016/j.fsi.2013.04.023
Ren P, Xu L, Yang Y, He S, Liu W, Ringo E, Zhou Z
(2013).
Lactobacillus planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus female symbol x Oreochromis aureus male symbol: an ex vivo study.
-
DOI: 10.12938/bmfh.31.85
Ozawa K, Fujiwara R, Watanabe K, Sonoyama K
(2012).
Persistence of orally administered lactobacillus strains in the gut of infant mice.
-
DOI: 10.1016/j.intimp.2015.02.011
Hatano S, Hirose Y, Yamamoto Y, Murosaki S, Yoshikai Y
(2015).
Scavenger receptor for lipoteichoic acid is involved in the potent ability of Lactobacillus plantarum strain L-137 to stimulate production of interleukin-12p40.
-
DOI: 10.1038/srep23214
Liu Z, Liu W, Ran C, Hu J, Zhou Z
(2016).
Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis.
-
DOI: 10.1002/mbo3.362
Liu W, Ran C, Liu Z, Gao Q, Xu S, Ringo E, Myklebust R, Gu Z, Zhou Z
(2016).
Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia.
-
DOI: 10.12938/bmfh.18-005
Horie M, Sato H, Tada A, Nakamura S, Sugino S, Tabei Y, Katoh M, Toyotome T
(2018).
Regional characteristics of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha.
-
DOI: 10.1128/aem.00190-22
Matsuzaki C, Shiraishi T, Chiou TY, Nakashima Y, Higashimura Y, Yokota SI, Yamamoto K, Takahashi T
(2022).
Role of Lipoteichoic Acid from the Genus Apilactobacillus in Inducing a Strong IgA Response.
-
DOI: 10.1039/d2fo02927h
Kudo H, Miyanaga K, Yamamoto N
(2023).
Immunomodulatory effects of extracellular glyceraldehyde 3-phosphate dehydrogenase of exopolysaccharide-producing Lactiplantibacillus plantarum JCM 1149.
-
DOI: 10.1016/j.ijfoodmicro.2011.01.029
Silva I, Campos FM, Hogg T, Couto JA
(2011).
Factors influencing the production of volatile phenols by wine lactic acid bacteria.
-
DOI: 10.3390/microorganisms9122478
Hong DK, Yoo MS, Heo K, Shim JJ, Lee JL
(2021).
Effects of L. plantarum HY7715 on the Gut Microbial Community and Riboflavin Production in a Three-Stage Semi-Continuous Simulated Gut System.
-
DOI: 10.1007/s11274-023-03556-w
Abd Allah FM, Elhosiny AM, Mohamed HF, Farrag AA, Elmeleigy MA
(2023).
Enhanced antimicrobial activity of lactic acid bacteria through genome shuffling and genetic variability among shuffled strains.
-
DOI: 10.1016/j.ijfoodmicro.2007.11.002
Rodriguez H, de las Rivas B, Gomez-Cordoves C, Munoz R
(2007).
Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
-
DOI: 10.1021/jf703779s
Rodriguez H, Landete JM, Curiel JA, de Las Rivas B, Mancheno JM, Munoz R
(2008).
Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).
-
DOI: 10.1016/j.pep.2009.07.006
Acebron I, Curiel JA, de Las Rivas B, Munoz R, Mancheno JM
(2009).
Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748(T).
-
DOI: 10.1016/j.talanta.2010.01.038
Gamella M, Campuzano S, Conzuelo F, Curiel JA, Munoz R, Reviejo AJ, Pingarron JM
(2010).
Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines.
-
DOI: 10.1016/j.biortech.2012.04.051
Salgado JM, Rodriguez-Solana R, Curiel JA, de las Rivas B, Munoz R, Dominguez JM
(2012).
Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T.
-
DOI: 10.3109/09637486.2014.986068
Maria Landete J, Hernandez T, Robredo S, Duenas M, de Las Rivas B, Estrella I, Munoz R
(2015).
Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek).
-
DOI: 10.1016/j.bbapap.2017.07.007
Acebron I, Plaza-Vinuesa L, de Las Rivas B, Munoz R, Cumella J, Sanchez-Sancho F, Mancheno JM
(2017).
Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum.
-
DOI: 10.1007/s13197-018-3245-4
Jang HJ, Song MW, Lee NK, Paik HD
(2018).
Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi.
-
DOI: 10.1007/s10068-018-0473-3
Yang SJ, Lee JE, Lim SM, Kim YJ, Lee NK, Paik HD
(2018).
Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi.
-
DOI: 10.1111/j.1472-765X.2004.01579.x
Laitila A, Saarela M, Kirk L, Siika-Aho M, Haikara A, Mattila-Sandholm T, Virkajarvi I
(2004).
Malt sprout extract medium for cultivation of Lactobacillus plantarum protective cultures.
-
DOI: 10.1111/lam.12094
Kuda T, Yazaki T, Ono M, Takahashi H, Kimura B
(2013).
In vitro cholesterol-lowering properties of Lactobacillus plantarum AN6 isolated from aji-narezushi.
-
DOI: 10.1007/s12602-016-9243-9
Hirano S, Yokota Y, Eda M, Kuda T, Shikano A, Takahashi H, Kimura B
(2017).
Effect of Lactobacillus plantarum Tennozu-SU2 on Salmonella Typhimurium Infection in Human Enterocyte-Like HT-29-Luc Cells and BALB/c Mice.
-
DOI: 10.3390/foods13060967
Yamasaki-Yashiki S, Kawashima F, Saika A, Hosomi R, Kunisawa J, Katakura Y
(2024).
RNA-Based Anti-Inflammatory Effects of Membrane Vesicles Derived from Lactiplantibacillus plantarum.
-
DOI: 10.1016/j.ijfoodmicro.2013.12.016
Cortes-Zavaleta O, Lopez-Malo A, Hernandez-Mendoza A, Garcia HS
(2013).
Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production.
-
DOI: 10.1007/s42770-020-00266-5
Arrioja-Breton D, Mani-Lopez E, Bach H, Lopez-Malo A
(2020).
Antimicrobial activity of protein-containing fractions isolated from Lactobacillus plantarum NRRL B-4496 culture.
-
DOI: 10.1007/s13205-020-02234-0
Kumar K, Rajulapati V, Goyal A
(2020).
In vitro prebiotic potential, digestibility and biocompatibility properties of laminari-oligosaccharides produced from curdlan by beta-1,3-endoglucanase from Clostridium thermocellum.
-
DOI: 10.3390/antibiotics11121813
Hernandez-Figueroa RH, Mani-Lopez E, Lopez-Malo A
(2022).
Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread.
-
DOI: 10.1007/s13213-018-1350-2
Gustaw K, Michalak M, Polak-Berecka M, Wasko A
(2018).
Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew.
-
DOI: 10.1016/j.jbiotec.2020.09.009
Kryachko Y, Batbayar B, Tanaka T, Nickerson MT, Korber DR
(2020).
Production of glycerol by Lactobacillus plantarum NRRL B-4496 and formation of hexamine during fermentation of pea protein enriched flour.
-
DOI: 10.3390/foods12101994
Ribeiro LEGGT, Batista LDSP, Assis CF, Damasceno KSFSC, Sousa Junior FC
(2023).
Potentially Synbiotic Yellow Mombin Beverages: Stability during Refrigerated Storage, Physicochemical Characteristics, and Sensory Properties.
-
DOI: 10.1371/journal.pone.0199021
Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, Man C
(2018).
Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG.