Strain sc|0024482


This strain is associated as type material for multiple names:

StrainInfo: SI-ID 44134 T

Taxon
Phaeobacter gallaeciensis (not Roseobacter gallaeciensis)
Sample
Seawater from larval cultures of scallop (ES)
Cultures (14)
ATCC 700781 = CIP 105210 = IAM 14812 = NCIMB 13546 = LMG 19757 = DSM 12440 = IFO 16654 = NBRC 16654 = LMG 23163 = DSM 17395 = JCM 21319 = LMG 24391 = CECT 7277 = DSM 26640
Other Designations (8)
LMG23163T QC 9/05 = LMG24391T QC oorspr = LMG 19757 QC 12/00 = LMG23163T QC oorspr = LMG19757T QC oorspr = BS 107 = BS107 = strain BS107
Sequences (10)
Associated Publications (46)
  • DOI: 10.1099/00207713-48-2-537
    Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL (1998). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus.
  • DOI: 10.1099/ijs.0.63724-0
    Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T (2006). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera.
  • DOI: 10.1099/ijs.0.053900-0
    Buddruhs N, Pradella S, Goker M, Pauker O, Pukall R, Sproer C, Schumann P, Petersen J, Brinkhoff T (2013). Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395.
  • DOI: 10.1016/j.fm.2016.01.005
    Porsby CH, Gram L (2016). Phaeobacter inhibens as biocontrol agent against Vibrio vulnificus in oyster models.
  • DOI: 10.3389/fmicb.2017.01787
    Bartling P, Brinkmann H, Bunk B, Overmann J, Goker M, Petersen J (2017). The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316(T)-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae.
  • DOI: 10.1111/1758-2229.12649
    Sonnenschein EC, Phippen CBW, Bentzon-Tilia M, Rasmussen SA, Nielsen KF, Gram L (2018). Phylogenetic distribution of roseobacticides in the Roseobacter group and their effect on microalgae.
  • DOI: 10.3389/fmicb.2018.01705
    Thogersen MS, Melchiorsen J, Ingham C, Gram L (2018). A Novel Microbial Culture Chamber Co-cultivation System to Study Algal-Bacteria Interactions Using Emiliania huxleyi and Phaeobacter inhibens as Model Organisms.
  • DOI: 10.1128/aem.01439-23
    Roager L, Athena-Vasileiadi D, Gram L, Sonnenschein EC (2024). Antagonistic activity of Phaeobacter piscinae against the emerging fish pathogen Vibrio crassostreae in aquaculture feed algae.
  • DOI: 10.1002/pmic.201200513
    Zech H, Hensler M, Kossmehl S, Druppel K, Wohlbrand L, Trautwein K, Hulsch R, Maschmann U, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R (2013). Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients.
  • DOI: 10.1002/pmic.201200560
    Zech H, Hensler M, Kossmehl S, Druppel K, Wohlbrand L, Trautwein K, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R (2013). Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395.
  • DOI: 10.1002/pmic.201300112
    Kossmehl S, Wohlbrand L, Druppel K, Feenders C, Blasius B, Rabus R (2013). Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395.
  • DOI: 10.1128/AEM.02717-13
    Neu AK, Mansson M, Gram L, Prol-Garcia MJ (2013). Toxicity of bioactive and probiotic marine bacteria and their secondary metabolites in Artemia sp. and Caenorhabditis elegans as eukaryotic model organisms.
  • DOI: 10.1111/1462-2920.12276
    Druppel K, Hensler M, Trautwein K, Kossmehl S, Wohlbrand L, Schmidt-Hohagen K, Ulbrich M, Bergen N, Meier-Kolthoff JP, Goker M, Klenk HP, Schomburg D, Rabus R (2013). Pathways and substrate-specific regulation of amino acid degradation in Phaeobacter inhibens DSM 17395 (archetype of the marine Roseobacter clade).
  • DOI: 10.3390/ijms15010654
    Zan J, Liu Y, Fuqua C, Hill RT (2014). Acyl-homoserine lactone quorum sensing in the Roseobacter clade.
  • DOI: 10.1128/AEM.00719-14
    Wiegmann K, Hensler M, Wohlbrand L, Ulbrich M, Schomburg D, Rabus R (2014). Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, a member of the marine roseobacter clade.
  • DOI: 10.4056/sigs.4448212
    Dogs M, Voget S, Teshima H, Petersen J, Davenport K, Dalingault H, Chen A, Pati A, Ivanova N, Goodwin LA, Chain P, Detter JC, Standfest S, Rohde M, Gronow S, Kyrpides NC, Woyke T, Simon M, Klenk HP, Goker M, Brinkhoff T (2013). Genome sequence of Phaeobacter inhibens type strain (T5(T)), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens.
  • DOI: 10.3762/bjoc.10.188
    Rabe P, Klapschinski TA, Brock NL, Citron CA, D'Alvise P, Gram L, Dickschat JS (2014). Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid.
  • DOI: 10.4056/sigs.5179110
    Frank O, Pradella S, Rohde M, Scheuner C, Klenk HP, Goker M, Petersen J (2014). Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210(T) (= DSM 26640(T) = BS107(T)).
  • DOI: 10.3109/13813455.2014.951658
    Rabus R (2014). Fifteen years of physiological proteo(geno)mics with (marine) environmental bacteria.
  • DOI: 10.1111/jam.12659
    Prol Garcia MJ, D'Alvise PW, Rygaard AM, Gram L (2014). Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395.
  • DOI: 10.1016/j.syapm.2014.12.001
    Frank O, Michael V, Pauker O, Boedeker C, Jogler C, Rohde M, Petersen J (2014). Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae.
  • DOI: 10.1038/ismej.2016.30
    Michael V, Frank O, Bartling P, Scheuner C, Goker M, Brinkmann H, Petersen J (2016). Biofilm plasmids with a rhamnose operon are widely distributed determinants of the 'swim-or-stick' lifestyle in roseobacters.
  • DOI: 10.1111/1462-2920.13381
    Trautwein K, Will SE, Hulsch R, Maschmann U, Wiegmann K, Hensler M, Michael V, Ruppersberg H, Wunsch D, Feenders C, Neumann-Schaal M, Kaltenhauser S, Ulbrich M, Schmidt-Hohagen K, Blasius B, Petersen J, Schomburg D, Rabus R (2016). Native plasmids restrict growth of Phaeobacter inhibens DSM 17395: Energetic costs of plasmids assessed by quantitative physiological analyses.
  • DOI: 10.1186/s40793-016-0201-7
    Giebel HA, Klotz F, Voget S, Poehlein A, Grosser K, Teske A, Brinkhoff T (2016). Draft genome sequence of the marine Rhodobacteraceae strain O3.65, cultivated from oil-polluted seawater of the Deepwater Horizon oil spill.
  • DOI: 10.1159/000454814
    Ruppersberg HS, Goebel MR, Kleinert SI, Wunsch D, Trautwein K, Rabus R (2017). Photometric Determination of Ammonium and Phosphate in Seawater Medium Using a Microplate Reader.
  • DOI: 10.1371/journal.pone.0177295
    Will SE, Neumann-Schaal M, Heydorn RL, Bartling P, Petersen J, Schomburg D (2017). The limits to growth - energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395.
  • DOI: 10.1039/c7ob00913e
    Burkhardt I, Lauterbach L, Brock NL, Dickschat JS (2017). Chemical differentiation of three DMSP lyases from the marine Roseobacter group.
  • DOI: 10.1093/femsec/fix059
    Trautwein K, Feenders C, Hulsch R, Ruppersberg HS, Strijkstra A, Kant M, Vagts J, Wunsch D, Michalke B, Maczka M, Schulz S, Hillebrand H, Blasius B, Rabus R (2017). Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium.
  • DOI: 10.1371/journal.pone.0186395
    Reimer LC, Will SE, Schomburg D (2017). The fate of lysine: Non-targeted stable isotope analysis reveals parallel ways for lysine catabolization in Phaeobacter inhibens.
  • DOI: 10.3762/bjoc.14.112
    Ziesche L, Rinkel J, Dickschat JS, Schulz S (2018). Acyl-group specificity of AHL synthases involved in quorum-sensing in Roseobacter group bacteria.
  • DOI: 10.1093/femsec/fiy154
    Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wohlbrand L, Wunsch D, Hinrichs C, Feenders C, Muller C, Schell K, Ruppersberg H, Vagts J, Kossmehl S, Steinbuchel A, Schmidt-Kopplin P, Wilkes H, Hillebrand H, Blasius B, Schomburg D, Rabus R (2018). The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks.
  • DOI: 10.1128/AEM.02095-19
    Wunsch D, Trautwein K, Scheve S, Hinrichs C, Feenders C, Blasius B, Schomburg D, Rabus R (2019). Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint.
  • DOI: 10.1159/000508591
    Wunsch D, Strijkstra A, Wohlbrand L, Freese HM, Scheve S, Hinrichs C, Trautwein K, Maczka M, Petersen J, Schulz S, Overmann J, Rabus R (2020). Global Response of Phaeobacter inhibens DSM 17395 to Deletion of Its 262-kb Chromid Encoding Antibiotic Synthesis.
  • DOI: 10.1038/s41396-021-00933-x
    Smith AF, Silvano E, Pauker O, Guillonneau R, Quareshy M, Murphy A, Mausz MA, Stirrup R, Rihtman B, Aguilo-Ferretjans M, Brandsma J, Petersen J, Scanlan DJ, Chen Y (2021). A novel class of sulfur-containing aminolipids widespread in marine roseobacters.
  • DOI: 10.1159/000522414
    Wunsch D, Scheve S, Weiten A, Kalvelage K, Rabus R (2022). Luciferase-Based Determination of ATP/NAD(H) Pools in a Marine (Environmental) Bacterium.
  • DOI: 10.1159/000524702
    Weiten A, Kalvelage K, Neumann-Schaal M, Buschen R, Scheve S, Winklhofer M, Rabus R (2022). Nanomolar Responsiveness of Marine Phaeobacter inhibens DSM 17395 toward Carbohydrates and Amino Acids.
  • DOI: 10.3389/fmicb.2022.917969
    Srinivas S, Berger M, Brinkhoff T, Niggemann J (2022). Impact of Quorum Sensing and Tropodithietic Acid Production on the Exometabolome of Phaeobacter inhibens.
  • DOI: 10.1002/pmic.200900120
    Zech H, Thole S, Schreiber K, Kalhofer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R (2009). Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade.
  • DOI: 10.1093/molbev/msq310
    Petersen J, Brinkmann H, Berger M, Brinkhoff T, Pauker O, Pradella S (2010). Origin and evolution of a novel DnaA-like plasmid replication type in Rhodobacterales.
  • DOI: 10.1002/pmic.201100071
    Zech H, Echtermeyer C, Wohlbrand L, Blasius B, Rabus R (2011). Biological versus technical variability in 2-D DIGE experiments with environmental bacteria.
  • DOI: 10.1007/978-1-61779-573-2_25
    Rabus R (2012). An overview of 2D DIGE analysis of marine (environmental) bacteria.
  • DOI: 10.1128/AEM.07657-11
    Berger M, Brock NL, Liesegang H, Dogs M, Preuth I, Simon M, Dickschat JS, Brinkhoff T (2012). Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis.
  • DOI: 10.1038/ismej.2012.62
    Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T (2012). Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life.
  • DOI: 10.3762/bjoc.9.108
    Brock NL, Citron CA, Zell C, Berger M, Wagner-Dobler I, Petersen J, Brinkhoff T, Simon M, Dickschat JS (2013). Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria.
  • DOI: 10.1099/ijsem.0.001935
    Cai X, Wang Y, Yang X, Liu J, Wu Y, Zhang XH (2017). Paraphaeobacter pallidus gen. nov., sp. nov., isolated from seawater.
  • DOI: 10.3389/fmicb.2017.01659
    Freese HM, Methner A, Overmann J (2017). Adaptation of Surface-Associated Bacteria to the Open Ocean: A Genomically Distinct Subpopulation of Phaeobacter gallaeciensis Colonizes Pacific Mesozooplankton.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:24482
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license