Strain sc|0026810


StrainInfo: SI-ID 36959 T

Taxon
Rhodococcus erythropolis
Sample
Soil
Cultures (37)
LMG 5359 = ATCC 25544 = ATCC 4277 = CCM 277 = CECT 3013 = DSM 43066 = DSM 743 = DSM 763 = IAM 12122 = IMET 7462 = JCM 3201 = NCIB 11148 = NCIB 9158 = CCUG 23603 = CIP 104179 = NCIMB 11148 = CIP 104662 = NCIMB 9158 = IFO 15567 = NRRL B-16025 = CCRC 10909 = KCTC 1062 = VKM Ac-858 = VKM Ac-1337 = CBS 266.39 = CCT 1878 = NBRC 15567 = NCTC 13021 = HAMBI 1953 = BCRC 10909 = NBIMCC 1360 = NCAIM B.01659 = NRRL B-1532 = JCM 20419 = CGMCC 1.2362 = CGMCC 4.1814 = CCUG 51075
Other Designations (24)
BS 277 = Kocur BS 277 = Gray 05 = ICPB 4417 = KCC A-0201 = Goodfellow N11 = IEGM 7 = Waksman 3407 = 11148 = AJ 9155 = N108 = IFM 0165 = PCM 2150 = CBS 266. 39 = AJ 9126 = CUB 642 = M. Goodfellow N11 = DSMZ 743 = 763, 43066 = ATCC 4277, 25544 = IMSNU 20115 = X53 = N11 = A-0201
Sequences (27)
Associated Publications (22)
  • DOI: 10.1186/1472-6750-2-3
    Sojo MM, Bru RR, Garcia-Carmona FF (2002). Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration.
  • DOI: 10.1002/bit.260320510
    Bar R (1988). Ultrasound enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis.
  • DOI: 10.1128/aem.61.10.3729-3733.1995
    Ludwig B, Akundi A, Kendall K (1995). A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277.
  • DOI: 10.3390/toxins7020439
    Eshelli M, Harvey L, Edrada-Ebel R, McNeil B (2015). Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0.
  • Hu TL (2003). Color removal ability of a streptomycin resistant decolorizing strain Rhodococcus erythropolis (ATCC:4277.1).
  • Zhu Q, Jia H, Li Y, Jia L, Ma Y, Wei P (2012). [Cloning, expression and characterization of chiral alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277].
  • DOI: 10.1007/s12010-014-1189-3
    Maass D, de Oliveira D, de Souza AA, Souza SM (2014). Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.
  • DOI: 10.1007/s00449-015-1386-7
    Maass D, Todescato D, Moritz DE, Oliveira JV, Oliveira D, Ulson de Souza AA, Guelli Souza SM (2015). Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277.
  • DOI: 10.1007/s12010-015-1764-2
    Maass D, Mayer DA, Moritz DE, Oliveira D, de Souza AA, Souza SM (2015). An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277.
  • DOI: 10.1007/s12010-017-2505-5
    Todescato D, Maass D, Mayer DA, Vladimir Oliveira J, de Oliveira D, Ulson de Souza SMAG, Ulson de Souza AA (2017). Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications.
  • DOI: 10.1007/s00253-019-10001-2
    Maass D, de Medeiros Machado M, Rovaris BC, Bernardin AM, de Oliveira D, Hotza D (2019). Biomining of iron-containing nanoparticles from coal tailings.
  • DOI: 10.1080/10934529.2020.1712176
    Chang JS, Cha DK, Radosevich M, Jin Y (2020). Different bioavailability of phenanthrene to two bacterial species and effects of trehalose lipids on the bioavailability.
  • DOI: 10.1016/j.jenvman.2023.117804
    das Neves Vasconcellos Brandao IY, Ferreira de Macedo E, Barboza de Souza Silva PH, Fontana Batista A, Graciano Petroni SL, Goncalves M, Conceicao K, de Sousa Triches E, Batista Tada D, Maass D (2023). Bionanomining of copper-based nanoparticles using pre-processed mine tailings as the precursor.
  • DOI: 10.1007/s00449-024-03048-7
    das Neves Vasconcellos Brandao IY, de Souza Silva PHB, Castori TV, de Souza YT, de Souza RG, Batista AF, Petroni SLG, Nazareth Zanutto TC, de Campos CBL, Maass D (2024). Rhodococcus erythropolis ATCC 4277 behavior against different metals and its potential use in waste biomining.
  • DOI: 10.1128/AEM.68.9.4502-4508.2002
    Noordman WH, Janssen DB (2002). Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.
  • DOI: 10.1128/AEM.69.10.5754-5766.2003
    Brandao PF, Clapp JP, Bull AT (2003). Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats.
  • DOI: 10.1016/j.femsle.2004.06.012
    Dong L, Nakashima N, Tamura N, Tamura T (2004). Isolation and characterization of the Rhodococcus opacus thiostrepton-inducible genes tipAL and tipAS: application for recombinant protein expression in Rhodococcus.
  • DOI: 10.1016/j.jbiosc.2009.04.010
    Teramoto K, Kitagawa W, Sato H, Torimura M, Tamura T, Tao H (2009). Phylogenetic analysis of Rhodococcus erythropolis based on the variation of ribosomal proteins as observed by matrix-assisted laser desorption ionization-mass spectrometry without using genome information.
  • DOI: 10.1128/MRA.01730-18
    Yoshida K, Kitagawa W, Ishiya K, Mitani Y, Nakashima N, Aburatani S, Tamura T (2019). Genome Sequence of Rhodococcus erythropolis Type Strain JCM 3201.
  • DOI: 10.3390/microorganisms11092147
    Engelhart-Straub S, Haack M, Awad D, Brueck T, Mehlmer N (2023). Optimization of Rhodococcus erythropolis JCM3201(T) Nutrient Media to Improve Biomass, Lipid, and Carotenoid Yield Using Response Surface Methodology.
  • DOI: 10.1007/s10482-017-0983-7
    Silva LJ, Souza DT, Genuario DB, Hoyos HAV, Santos SN, Rosa LH, Zucchi TD, Melo IS (2017). Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica.
  • DOI: 10.1007/s00253-010-2977-5
    He YC, Ma CL, Xu JH, Zhou L (2010). A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:26810
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license