Strain sc|0028339


Strain numbers

ATCC 19435 = CCUG 32211 = CCUG 7980 = CIP 70.56 = DSM 20481 = HAMBI 1591 = JCM 5805 = LMG 6890 = NBIMCC 4000 = NBRC 100933 = NCDO 604 = NCFB 604 = NCIB 6681 = NCIMB 6681 = NCTC 6681 = VKM B-1662

StrainInfo: SI-ID 11441 T

Taxon
Lactococcus lactis subsp. lactis
Sample
(GB)
Cultures (30)
LMG 6890 = ATCC 19435 = ATCC 9936 = CCM 1877 = CCUG 7980 = CECT 185 = NCFB 604 = NCIMB 6681 = NCTC 6681 = NCDO 604 = NCIB 6681 = CCUG 32211 = JCM 5805 = CIP20481 = IMET10699 = VKM B-1662 = CCRC 12312 = VTT E-90395 = KCTC 3508 = KCTC 3769 = NBIMCC 4000 = NBRC 100933 = BCRC 12312 = HAMBI 1591 = NCAIM B.02070 = CDBB 597 = CNCTC 6911 = CGMCC 1.1936 = DSM 20481 = CIP 70.56
Other Designations (40)
USCC 1394 = WDCM 00016 = HNCMB 80146 = IEM Str N 25/58 = Bridge PB93 = Feltham K466 = CCTM 3105 = CNCTC Str N 25/58 = Bridge PB48 = Lancefield grouping strain C559 = Jones W59 = Cayeux N30 = BU 302 = strain O. J. = LMG 6890TQC11/92 = NCDP 604 = LMG 6890 TQC1/00 = CCTM La 3436 = LMG 6890T t2 QC06/04 = Shattock lactis OJ = grouping C559 = Lancefield C559 = OJ ATCC9936 = Orla-Jensen S. strain OJ = Orla-Jensen strain OJ = DSMZ 20481 = O.J = NRIC 1149 = LMG 6890T QC 5/95 = CNCTC Str 25/58 = LMG 6890T t1 QC06/04 = Orla-Jensen S strain OJ = LMG 6890TQC9/97 = O. J = LMG 6890 2 = LMG 6890 1 = LMG 6890T QC 2/03 = BUCSAV 302 = O J = N30
Sequences (40)
Associated Publications (31)
  • DOI: 10.1128/AEM.00436-13
    Parapouli M, Delbes-Paus C, Kakouri A, Koukkou AI, Montel MC, Samelis J (2013). Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk.
  • DOI: 10.1271/bbb.57.88
    Araya T, Ishibashi N, Shimamura S, Tanaka K, Takahashi H (1993). Genetic and molecular analysis of the rpoD gene from Lactococcus lactis.
  • DOI: 10.1128/AEM.67.10.4546-4553.2001
    Levander F, Andersson U, Radstrom P (2001). Physiological role of beta-phosphoglucomutase in Lactococcus lactis.
  • DOI: 10.1128/AEM.68.9.4350-4356.2002
    van Niel EW, Hofvendahl K, Hahn-Hagerdal B (2002). Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions.
  • DOI: 10.1128/AEM.70.9.5477-5484.2004
    Palmfeldt J, Paese M, Hahn-Hagerdal B, Van Niel EW (2004). The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
  • DOI: 10.1263/jbb.105.116
    Tarahomjoo S, Katakura Y, Satoh E, Shioya S (2008). Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403.
  • DOI: 10.1111/j.1742-4658.2010.07601.x
    Cao R, Zeidan AA, Radstrom P, van Niel EW (2010). Inhibition kinetics of catabolic dehydrogenases by elevated moieties of ATP and ADP--implication for a new regulation mechanism in Lactococcus lactis.
  • DOI: 10.4014/jmb.1604.04008
    Kim YJ, Lee SH (2016). Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm.
  • DOI: 10.3168/jds.2017-13992
    Konkit M, Kim K, Kim JH, Kim W (2018). Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats.
  • DOI: 10.3168/jds.2018-15973
    Yang Y, Li N, Jiang Y, Liu Z, Liu X, Zhao J, Zhang H, Chen W (2019). Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
  • DOI: 10.1128/iai.11.5.973-981.1975
    Wicken AJ, Knox KW (1975). Characterization of group N streptococcus lipoteichoic acid.
  • DOI: 10.1016/j.fsi.2018.11.022
    Xia Y, Cao J, Wang M, Lu M, Chen G, Gao F, Liu Z, Zhang D, Ke X, Yi M (2018). Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia.
  • DOI: 10.1038/s41598-023-47687-4
    Kingkaew E, Woraprayote W, Booncharoen A, Niwasabutra K, Janyaphisan T, Vilaichone RK, Yamaoka Y, Visessanguan W, Tanasupawat S (2023). Functional genome analysis and anti-Helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7C from Thai fermented pork (Nham).
  • DOI: 10.1371/journal.pone.0032588
    Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D (2012). Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells.
  • DOI: 10.1016/j.clim.2013.10.007
    Sugimura T, Jounai K, Ohshio K, Tanaka T, Suwa M, Fujiwara D (2013). Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells.
  • DOI: 10.1371/journal.pone.0119055
    Jounai K, Sugimura T, Ohshio K, Fujiwara D (2015). Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection.
  • DOI: 10.1128/genomeA.00113-15
    Fujii T, Tomita Y, Ikushima S, Horie A, Fujiwara D (2015). Draft Genome Sequence of Lactococcus lactis subsp. lactis JCM 5805T, a Strain That Induces Plasmacytoid Dendritic Cell Activation.
  • DOI: 10.1017/S0007114515002408
    Sugimura T, Takahashi H, Jounai K, Ohshio K, Kanayama M, Tazumi K, Tanihata Y, Miura Y, Fujiwara D, Yamamoto N (2015). Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus.
  • DOI: 10.1080/09168451.2015.1116922
    Suzuki H, Ohshio K, Fujiwara D (2015). Lactococcus lactis subsp. lactis JCM 5805 activates natural killer cells via dendritic cells.
  • DOI: 10.1016/j.intimp.2018.01.034
    Jounai K, Sugimura T, Morita Y, Ohshio K, Fujiwara D (2018). Administration of Lactococcus lactis strain Plasma induces maturation of plasmacytoid dendritic cells and protection from rotavirus infection in suckling mice.
  • DOI: 10.1038/s41598-018-21527-2
    Kanayama M, Kato Y, Tsuji T, Konoeda Y, Hashimoto A, Kanauchi O, Fujii T, Fujiwara D (2018). Enhancement of immunomodulative effect of lactic acid bacteria on plasmacytoid dendritic cells with sucrose palmitate.
  • DOI: 10.1016/j.intimp.2018.03.024
    Sugimura T, Jounai K, Ohshio K, Suzuki H, Kirisako T, Sugihara Y, Fujiwara D (2018). Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.
  • DOI: 10.1186/s12970-018-0244-9
    Komano Y, Shimada K, Naito H, Fukao K, Ishihara Y, Fujii T, Kokubo T, Daida H (2018). Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial.
  • DOI: 10.1016/j.jiac.2020.01.006
    Komaki S, Haque A, Miyazaki H, Matsumoto T, Nakamura S (2020). Unexpected effect of probiotics by Lactococcus lactis subsp. lactis against colitis induced by dextran sulfate sodium in mice.
  • DOI: 10.3168/jds.2016-11002
    Konkit M, Kim W (2016). Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.
  • DOI: 10.3390/nu15204482
    Ali MS, Ahmed S, Takeuchi S, Wada T, Kage-Nakadai E (2023). Improvement of Locomotion Caused by Lactococcus lactis subsp. lactis in the Model Organism Caenorhabditis elegans.
  • DOI: 10.1099/ijs.0.045757-0
    Chen YS, Chang CH, Pan SF, Wang LT, Chang YC, Wu HC, Yanagida F (2012). Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia.
  • DOI: 10.1016/s0168-1605(00)00411-6
    Moschetti G, Blaiotta G, Villani F, Coppola S (2001). Nisin-producing organisms during traditional 'Fior di latte' cheese-making monitored by multiplex-PCR and PFGE analyses.
  • DOI: 10.1186/2191-0855-2-39
    Stressler T, Eisele T, Schlayer M, Fischer L (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481.
  • DOI: 10.1371/journal.pone.0152139
    Stressler T, Ewert J, Merz M, Funk J, Claassen W, Lutz-Wahl S, Schmidt H, Kuhn A, Fischer L (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.
  • DOI: 10.1016/j.ijfoodmicro.2016.03.002
    Larsen N, Moslehi-Jenabian S, Werner BB, Jensen ML, Garrigues C, Vogensen FK, Jespersen L (2016). Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:28339
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license