Strain sc|0028339


StrainInfo: SI-ID 11441 T

Taxon
Lactococcus lactis subsp. lactis (not Streptococcus lactis subsp. lactis)
Sample
(GB)
Cultures (30)
LMG 6890 = ATCC 19435 = ATCC 9936 = CCM 1877 = CCUG 7980 = CECT 185 = NCFB 604 = NCIMB 6681 = NCTC 6681 = NCDO 604 = NCIB 6681 = CCUG 32211 = JCM 5805 = CIP20481 = IMET10699 = VKM B-1662 = CCRC 12312 = VTT E-90395 = KCTC 3508 = KCTC 3769 = NBIMCC 4000 = NBRC 100933 = BCRC 12312 = HAMBI 1591 = NCAIM B.02070 = CDBB 597 = CNCTC 6911 = CGMCC 1.1936 = DSM 20481 = CIP 70.56
Other Designations (40)
USCC 1394 = WDCM 00016 = HNCMB 80146 = IEM Str N 25/58 = Bridge PB93 = Feltham K466 = CCTM 3105 = CNCTC Str N 25/58 = Bridge PB48 = Lancefield grouping strain C559 = Jones W59 = Cayeux N30 = BU 302 = strain O. J. = LMG 6890TQC11/92 = NCDP 604 = LMG 6890 TQC1/00 = CCTM La 3436 = LMG 6890T t2 QC06/04 = Shattock lactis OJ = grouping C559 = Lancefield C559 = OJ ATCC9936 = Orla-Jensen S. strain OJ = Orla-Jensen strain OJ = DSMZ 20481 = O.J = NRIC 1149 = LMG 6890T QC 5/95 = CNCTC Str 25/58 = LMG 6890T t1 QC06/04 = Orla-Jensen S strain OJ = LMG 6890TQC9/97 = O. J = LMG 6890 2 = LMG 6890 1 = LMG 6890T QC 2/03 = BUCSAV 302 = O J = N30
Sequences (40)
Associated Publications (31)
  • DOI: 10.1128/AEM.00436-13
    Parapouli M, Delbes-Paus C, Kakouri A, Koukkou AI, Montel MC, Samelis J (2013). Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk.
  • DOI: 10.1271/bbb.57.88
    Araya T, Ishibashi N, Shimamura S, Tanaka K, Takahashi H (1993). Genetic and molecular analysis of the rpoD gene from Lactococcus lactis.
  • DOI: 10.1128/AEM.67.10.4546-4553.2001
    Levander F, Andersson U, Radstrom P (2001). Physiological role of beta-phosphoglucomutase in Lactococcus lactis.
  • DOI: 10.1128/AEM.68.9.4350-4356.2002
    van Niel EW, Hofvendahl K, Hahn-Hagerdal B (2002). Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions.
  • DOI: 10.1128/AEM.70.9.5477-5484.2004
    Palmfeldt J, Paese M, Hahn-Hagerdal B, Van Niel EW (2004). The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
  • DOI: 10.1263/jbb.105.116
    Tarahomjoo S, Katakura Y, Satoh E, Shioya S (2008). Bidirectional cell-surface anchoring function of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403.
  • DOI: 10.1111/j.1742-4658.2010.07601.x
    Cao R, Zeidan AA, Radstrom P, van Niel EW (2010). Inhibition kinetics of catabolic dehydrogenases by elevated moieties of ATP and ADP--implication for a new regulation mechanism in Lactococcus lactis.
  • DOI: 10.4014/jmb.1604.04008
    Kim YJ, Lee SH (2016). Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm.
  • DOI: 10.3168/jds.2017-13992
    Konkit M, Kim K, Kim JH, Kim W (2018). Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats.
  • DOI: 10.3168/jds.2018-15973
    Yang Y, Li N, Jiang Y, Liu Z, Liu X, Zhao J, Zhang H, Chen W (2019). Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
  • DOI: 10.1128/iai.11.5.973-981.1975
    Wicken AJ, Knox KW (1975). Characterization of group N streptococcus lipoteichoic acid.
  • DOI: 10.1016/j.fsi.2018.11.022
    Xia Y, Cao J, Wang M, Lu M, Chen G, Gao F, Liu Z, Zhang D, Ke X, Yi M (2018). Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia.
  • DOI: 10.1038/s41598-023-47687-4
    Kingkaew E, Woraprayote W, Booncharoen A, Niwasabutra K, Janyaphisan T, Vilaichone RK, Yamaoka Y, Visessanguan W, Tanasupawat S (2023). Functional genome analysis and anti-Helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7C from Thai fermented pork (Nham).
  • DOI: 10.1371/journal.pone.0032588
    Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D (2012). Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells.
  • DOI: 10.1016/j.clim.2013.10.007
    Sugimura T, Jounai K, Ohshio K, Tanaka T, Suwa M, Fujiwara D (2013). Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells.
  • DOI: 10.1371/journal.pone.0119055
    Jounai K, Sugimura T, Ohshio K, Fujiwara D (2015). Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection.
  • DOI: 10.1128/genomeA.00113-15
    Fujii T, Tomita Y, Ikushima S, Horie A, Fujiwara D (2015). Draft Genome Sequence of Lactococcus lactis subsp. lactis JCM 5805T, a Strain That Induces Plasmacytoid Dendritic Cell Activation.
  • DOI: 10.1017/S0007114515002408
    Sugimura T, Takahashi H, Jounai K, Ohshio K, Kanayama M, Tazumi K, Tanihata Y, Miura Y, Fujiwara D, Yamamoto N (2015). Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus.
  • DOI: 10.1080/09168451.2015.1116922
    Suzuki H, Ohshio K, Fujiwara D (2015). Lactococcus lactis subsp. lactis JCM 5805 activates natural killer cells via dendritic cells.
  • DOI: 10.1016/j.intimp.2018.01.034
    Jounai K, Sugimura T, Morita Y, Ohshio K, Fujiwara D (2018). Administration of Lactococcus lactis strain Plasma induces maturation of plasmacytoid dendritic cells and protection from rotavirus infection in suckling mice.
  • DOI: 10.1038/s41598-018-21527-2
    Kanayama M, Kato Y, Tsuji T, Konoeda Y, Hashimoto A, Kanauchi O, Fujii T, Fujiwara D (2018). Enhancement of immunomodulative effect of lactic acid bacteria on plasmacytoid dendritic cells with sucrose palmitate.
  • DOI: 10.1016/j.intimp.2018.03.024
    Sugimura T, Jounai K, Ohshio K, Suzuki H, Kirisako T, Sugihara Y, Fujiwara D (2018). Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.
  • DOI: 10.1186/s12970-018-0244-9
    Komano Y, Shimada K, Naito H, Fukao K, Ishihara Y, Fujii T, Kokubo T, Daida H (2018). Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial.
  • DOI: 10.1016/j.jiac.2020.01.006
    Komaki S, Haque A, Miyazaki H, Matsumoto T, Nakamura S (2020). Unexpected effect of probiotics by Lactococcus lactis subsp. lactis against colitis induced by dextran sulfate sodium in mice.
  • DOI: 10.3168/jds.2016-11002
    Konkit M, Kim W (2016). Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.
  • DOI: 10.3390/nu15204482
    Ali MS, Ahmed S, Takeuchi S, Wada T, Kage-Nakadai E (2023). Improvement of Locomotion Caused by Lactococcus lactis subsp. lactis in the Model Organism Caenorhabditis elegans.
  • DOI: 10.1099/ijs.0.045757-0
    Chen YS, Chang CH, Pan SF, Wang LT, Chang YC, Wu HC, Yanagida F (2012). Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia.
  • DOI: 10.1016/s0168-1605(00)00411-6
    Moschetti G, Blaiotta G, Villani F, Coppola S (2001). Nisin-producing organisms during traditional 'Fior di latte' cheese-making monitored by multiplex-PCR and PFGE analyses.
  • DOI: 10.1186/2191-0855-2-39
    Stressler T, Eisele T, Schlayer M, Fischer L (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481.
  • DOI: 10.1371/journal.pone.0152139
    Stressler T, Ewert J, Merz M, Funk J, Claassen W, Lutz-Wahl S, Schmidt H, Kuhn A, Fischer L (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.
  • DOI: 10.1016/j.ijfoodmicro.2016.03.002
    Larsen N, Moslehi-Jenabian S, Werner BB, Jensen ML, Garrigues C, Vogensen FK, Jespersen L (2016). Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.
Outside links and data sources
Retrieved 23 days ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:28339
Local history
  • Registered about 1 year ago
  • Last modified 23 days ago
© 2022-2026 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license