-
DOI: 10.1101/gr.076448.108
Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C, Masson-Boivin C
(2008).
Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia.
-
DOI: 10.1128/AEM.71.11.7461-7471.2005
Chen WM, de Faria SM, Straliotto R, Pitard RM, Simoes-Araujo JL, Chou JH, Chou YJ, Barrios E, Prescott AR, Elliott GN, Sprent JI, Young JP, James EK
(2005).
Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America.
-
DOI: 10.1111/j.1469-8137.2006.01894.x
Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK
(2007).
Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta.
-
DOI: 10.1111/j.1462-2920.2008.01799.x
Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martinez-Romero E, Velazquez E, Young JP, Sprent JI, James EK
(2008).
Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions.
-
DOI: 10.1099/mic.0.058370-0
Chen WM, Prell J, James EK, Sheu DS, Sheu SY
(2012).
Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica.
-
DOI: 10.1128/AEM.01691-12
Saad MM, Crevecoeur M, Masson-Boivin C, Perret X
(2012).
The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala.
-
DOI: 10.1039/c2ob26296g
Kreutzer MF, Nett M
(2012).
Genomics-driven discovery of taiwachelin, a lipopeptide siderophore from Cupriavidus taiwanensis.
-
DOI: 10.1186/s12864-018-4487-2
Klonowska A, Melkonian R, Miche L, Tisseyre P, Moulin L
(2018).
Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.
-
DOI: 10.1094/MPMI-06-19-0168-R
Daubech B, Poinsot V, Klonowska A, Capela D, Chaintreuil C, Moulin L, Marchetti M, Masson-Boivin C
(2019).
noeM, a New Nodulation Gene Involved in the Biosynthesis of Nod Factors with an Open-Chain Oxidized Terminal Residue and in the Symbiosis with Mimosa pudica.
-
DOI: 10.1186/s12864-020-6623-z
Klonowska A, Moulin L, Ardley JK, Braun F, Gollagher MM, Zandberg JD, Marinova DV, Huntemann M, Reddy TBK, Varghese NJ, Woyke T, Ivanova N, Seshadri R, Kyrpides N, Reeve WG
(2020).
Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil.
-
DOI: 10.1021/acs.jnatprod.0c00054
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K
(2020).
A Unique Combination of Two Different Quorum Sensing Systems in the beta-Rhizobium Cupriavidus taiwanensis.
-
DOI: 10.3389/fmicb.2023.1082107
Klonowska A, Ardley J, Moulin L, Zandberg J, Patrel D, Gollagher M, Marinova D, Reddy TBK, Varghese N, Huntemann M, Woyke T, Seshadri R, Ivanova N, Kyrpides N, Reeve W
(2023).
Discovery of a novel filamentous prophage in the genome of the Mimosa pudica microsymbiont Cupriavidus taiwanensis STM 6018.