-
DOI: 10.1099/00221287-96-1-137
Mollby R, Holme T, Nord CE, Smyth CJ, Wadstrom T
(1976).
Production of phospholipase C (alpha-toxin), haemolysins and lethal toxins by Clostridium perfringens types A to D.
-
DOI: 10.1016/s0934-8840(11)80215-x
Wolf U, Bauer D, Traub WH
(1991).
Collagenase of Clostridium perfringens type A: degradation of human complement component C1q.
-
DOI: 10.1128/jcm.28.12.2804-2805.1990
Zabransky RJ, Bayola-Mueller L, Jenkins SG, Pitkin DR, Schreckenberger PC, Celig DM, Spiegel CA
(1990).
Quality control criteria for testing the susceptibility of anaerobic bacteria to meropenem.
-
DOI: 10.1128/jcm.27.1.190-191.1989
Zabransky RJ, Bobey DG, Barry AL, Allen SD, Fuchs PC, Gerlach EH, Thornsberry C, Sheikh W, Jones RN
(1989).
Quality control guidelines for testing cefotetan in the reference agar dilution procedure for susceptibility testing of anaerobic bacteria.
-
DOI: 10.1128/AAC.31.2.213
Stevens DL, Maier KA, Mitten JE
(1987).
Effect of antibiotics on toxin production and viability of Clostridium perfringens.
-
DOI: 10.3382/ps.0660652
Dafwang II, Ricke SC, Schaefer DM, Brotz PG, Sunde ML, Pringle DJ
(1987).
Evaluation of some commercial media for the cultivation and enumeration of Clostridium perfringens from the chick intestine.
-
DOI: 10.1016/s0176-6724(87)80035-4
Traub WH, Spohr M, Bauer D
(1987).
Growth curves of Clostridium perfringens in Schaedler and brain heart infusion broths.
-
DOI: 10.1128/iai.56.12.3228-3234.1988
Tweten RK
(1988).
Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product.
-
DOI: 10.1128/AAC.30.5.749
Malouin F, Fijalkowski C, Lamothe F, Lacroix JM
(1986).
Inactivation of cefoxitin and moxalactam by Bacteroides bivius beta-lactamase.
-
DOI: 10.1128/AAC.27.3.424
Sutter VL, Emmerman J, Randall E, Zabransky RJ, Birk RJ
(1985).
Establishment of MICs of moxalactam for control and reference anaerobic organisms in agar dilution and microdilution techniques.
-
DOI: 10.1128/jcm.21.2.269-272.1985
Mangels JI, Lindberg LH
(1985).
Evaluation of broth microdilution susceptibility results for anaerobic organisms by use of a rapid direct colony inoculum.
-
DOI: 10.1128/jcm.17.4.711-714.1983
Zabransky RJ, Randall E, Sutter VL, Birk RJ, Westenfelder G, Emmerman J, Ghoneim AT
(1983).
Establishment of minimum inhibitory concentrations of cefoperazone for control and reference anaerobic organisms.
-
DOI: 10.1016/s0890-8508(95)80034-4
Schlapp T, Blaha I, Bauerfeind R, Wieler LH, Schoepe H, Weiss R, Baljer G
(1995).
Synthesis and evaluation of a non-radioactive gene probe for the detection of C.perfringens alpha toxin.
-
DOI: 10.1016/s0934-8840(97)80073-4
Gubash SM
(1997).
Evaluation of the synergistic haemolysis (CAMP-like) test in the identification of motile, mesophilic Aeromonas species.
-
DOI: 10.1016/s0378-8741(01)00185-4
Gadhi CA, Hatier R, Mory F, Marchal L, Weber M, Benharref A, Jana M, Lozniewski A
(2001).
Bactericidal properties of the chloroform fraction from rhizomes of Aristolochia paucinervis Pomel.
-
DOI: 10.1590/s1517-74912002000100006
Rosa OP, Torres SA, Ferreira CM, Ferreira FB
(2002).
In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method.
-
DOI: 10.1590/s0103-64402002000200008
Ferreira CM, da Silva Rosa OP, Torres SA, Ferreira FB, Bernardinelli N
(2002).
Activity of endodontic antibacterial agents against selected anaerobic bacteria.
-
DOI: 10.1016/s0887-2333(02)00131-5
Chung KT, Adris P
(2003).
Growth inhibition of intestinal bacteria and mutagenicity of 2-, 3-, 4-aminobiphenyls, benzidine, and biphenyl.
-
DOI: 10.1128/AEM.71.8.4185-4190.2005
Teo AY, Tan HM
(2005).
Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens.
-
DOI: 10.1107/S1744309105024012
Ficko-Blean E, Boraston AB
(2005).
Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens.
-
DOI: 10.1101/gr.5238106
Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT
(2006).
Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens.
-
DOI: 10.1128/JB.01407-07
Mendez M, Huang IH, Ohtani K, Grau R, Shimizu T, Sarker MR
(2007).
Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens.
-
DOI: 10.1007/s00253-007-1319-8
Nakajima M, Nihira T, Nishimoto M, Kitaoka M
(2008).
Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.
-
DOI: 10.1186/1471-2180-8-194
Alam SI, Bansod S, Singh L
(2008).
Immunization against Clostridium perfringens cells elicits protection against Clostridium tetani in mouse model: identification of cross-reactive proteins using proteomic methodologies.
-
DOI: 10.1186/1471-2180-9-162
Alam SI, Bansod S, Kumar RB, Sengupta N, Singh L
(2009).
Differential proteomic analysis of Clostridium perfringens ATCC13124; identification of dominant, surface and structure associated proteins.
-
DOI: 10.1016/j.anaerobe.2010.02.006
Cooper KK, Theoret JR, Stewart BA, Trinh HT, Glock RD, Songer JG
(2010).
Virulence for chickens of Clostridium perfringens isolated from poultry and other sources.
-
DOI: 10.1128/IAI.00374-10
Sengupta N, Alam SI, Kumar B, Kumar RB, Gautam V, Kumar S, Singh L
(2010).
Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains.
-
DOI: 10.1007/s00253-010-2982-8
Schmitz JE, Ossiprandi MC, Rumah KR, Fischetti VA
(2010).
Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens.
-
DOI: 10.1002/prot.23116
Ficko-Blean E, Stuart CP, Boraston AB
(2011).
Structural analysis of CPF_2247, a novel alpha-amylase from Clostridium perfringens.
-
DOI: 10.1016/j.meatsci.2007.06.010
Parry-Hanson A, Hall A, Minnaar A, Buys EM
(2007).
Use of gamma-irradiation to reduce Clostridium perfringens on ready-to-eat bovine tripe.
-
DOI: 10.1186/1471-2180-13-50
Park S, Park M, Rafii F
(2013).
Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens.
-
DOI: 10.1186/1472-6882-13-245
Perumalsamy H, Jung MY, Hong SM, Ahn YJ
(2013).
Growth-Inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria.
-
DOI: 10.4315/0362-028X.JFP-13-106
Kennedy KM, Milkowski AL, Glass KA
(2013).
Inhibition of Clostridium perfringens growth by potassium lactate during an extended cooling of cooked uncured ground turkey breasts.
-
DOI: 10.1016/j.anaerobe.2015.07.006
Dwivedi P, Alam SI, Kumar O, Kumar RB
(2015).
Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence.
-
DOI: 10.1016/j.biortech.2015.10.027
Yin Y, Wang J
(2015).
Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum.
-
DOI: 10.4014/jmb.1510.10056
Kong M, Ryu S
(2016).
Identification of a Bacteria-Specific Binding Protein from the Sequenced Bacterial Genome.
-
DOI: 10.1002/jobm.201500582
Fan S, Zhang H, Chen X, Lu L, Xu L, Xiao M
(2015).
Cloning, characterization, and production of three alpha-L-fucosidases from Clostridium perfringens ATCC 13124.
-
DOI: 10.1016/j.jmb.2016.03.020
Noach I, Pluvinage B, Laurie C, Abe KT, Alteen MG, Vocadlo DJ, Boraston AB
(2016).
The Details of Glycolipid Glycan Hydrolysis by the Structural Analysis of a Family 123 Glycoside Hydrolase from Clostridium perfringens.
-
DOI: 10.1016/j.anaerobe.2016.04.005
Zhou YF, Yu Y, Sun J, Tao MT, Zhou WJ, Li X, Liao XP, Liu YH
(2016).
Ex vivo pharmacokinetic/pharmacodynamic relationship of valnemulin against Clostridium perfringens in plasma, the small intestinal and caecal contents of rabbits.
-
DOI: 10.1016/j.meegid.2016.06.040
Alam SI, Dwivedi P
(2016).
Putative function of hypothetical proteins expressed by Clostridium perfringens type A strains and their protective efficacy in mouse model.
-
DOI: 10.1128/AEM.01325-16
Chen X, Xu L, Jin L, Sun B, Gu G, Lu L, Xiao M
(2016).
Efficient and Regioselective Synthesis of beta-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating beta-N-Acetylhexosaminidase from Bifidobacterium bifidum.
-
DOI: 10.1155/2016/4829716
Park M, Mitchell WJ, Rafii F
(2016).
Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant.
-
DOI: 10.1016/j.anaerobe.2017.02.004
Park M, Rafii F
(2017).
Exposure to beta-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens.
-
DOI: 10.1007/s12223-017-0503-1
Kumar RB, Alam SI
(2017).
Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model.
-
DOI: 10.1016/j.carres.2017.06.003
Vinogradov E, Aubry A, Logan SM
(2017).
Structural characterization of wall and lipidated polysaccharides from Clostridium perfringens ATCC 13124.
-
DOI: 10.1128/AEM.00071-18
Guo L, Chen X, Xu L, Xiao M, Lu L
(2018).
Enzymatic Synthesis of 6'-Sialyllactose, a Dominant Sialylated Human Milk Oligosaccharide, by a Novel exo-alpha-Sialidase from Bacteroides fragilis NCTC9343.
-
DOI: 10.1007/s42770-018-0017-2
Phoem AN, Mayiding A, Saedeh F, Permpoonpattana P
(2018).
Evaluation of Lactobacillus plantarum encapsulated with Eleutherine americana oligosaccharide extract as food additive in yoghurt.
-
DOI: 10.3760/cma.j.issn.0376-2491.2018.48.013
Wang SM, Wang ZY
(2018).
[A study on clinical application of a novel reagent detecting toxigenic strains of Clostridium difficile].
-
DOI: 10.3389/fmicb.2019.01281
Kay S, Edwards J, Brown J, Dixon R
(2019).
Galleria mellonella Infection Model Identifies Both High and Low Lethality of Clostridium perfringens Toxigenic Strains and Their Response to Antimicrobials.
-
DOI: 10.3390/v11111002
Ha E, Chun J, Kim M, Ryu S
(2019).
Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1.
-
DOI: 10.1016/j.anaerobe.2020.102179
Park M, Sutherland JB, Rafii F
(2020).
beta-Lactam resistance development affects binding of penicillin-binding proteins (PBPs) of Clostridium perfringens to the fluorescent penicillin, BOCILLIN FL.
-
DOI: 10.3390/microorganisms9010166
Lone A, Mottawea W, Ait Chait Y, Hammami R
(2021).
Dual Inhibition of Salmonella enterica and Clostridium perfringens by New Probiotic Candidates Isolated from Chicken Intestinal Mucosa.
-
DOI: 10.51620/0869-2084-2021-66-2-110-114
Boronina LG, Samatova EV, Kukushkina MP, Panova SA, Ustyugova SS
(2021).
In-laboratory quality control of nutrients for automatic bacteriology analyzer YUNON(R)Labstar 50.
-
DOI: 10.14202/vetworld.2022.1617-1623
Saadh MJ, Lafi FF, Dahadha AA, Albannan MS
(2022).
Immunogenicity of a newly developed vaccine against Clostridium perfringens alpha-toxin in rabbits and cattle.
-
DOI: 10.3390/foods12020411
Lu R, Liu B, Wu L, Bao H, Garcia P, Wang Y, Zhou Y, Zhang H
(2023).
A Broad-Spectrum Phage Endolysin (LysCP28) Able to Remove Biofilms and Inactivate Clostridium perfringens Strains.
-
DOI: 10.1016/j.cyto.2023.156276
Liu Y, Liang J, Li JW, Xing LH, Li FX, Wang N, Wu YJ, Ma YZ, Xing ZR, Jiang X, Zhang XY, Lei ZX, Wang X, Yu SX
(2023).
Phagocyte extracellular traps formation contributes to host defense against Clostridium perfringens infection.
-
DOI: 10.3390/foods11203217
Fusieger A, da Silva RR, Cavicchioli VQ, Rodrigues RDS, Honorato JA, de Jesus Silva SR, Pena ML, Caggia C, Nero LA, de Carvalho AF
(2022).
Influence of Emulsifying Salts on the Growth of Bacillus thuringiensis CFBP 3476 and Clostridium perfringens ATCC 13124 in Processed Cheese.
-
DOI: 10.1128/iai.62.11.5032-5039.1994
Ninomiya M, Matsushita O, Minami J, Sakamoto H, Nakano M, Okabe A
(1994).
Role of alpha-toxin in Clostridium perfringens infection determined by using recombinants of C. perfringens and Bacillus subtilis.
-
DOI: 10.1128/iai.61.2.457-463.1993
Katayama S, Matsushita O, Minami J, Mizobuchi S, Okabe A
(1993).
Comparison of the alpha-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription.
-
DOI: 10.1099/13500872-142-1-191
Ginter A, Williamson ED, Dessy F, Coppe P, Bullifent H, Howells A, Titball RW
(1996).
Molecular variation between the alpha-toxins from the type strain (NCTC 8237) and clinical isolates of Clostridium perfringens associated with disease in man and animals.
-
DOI: 10.1111/j.1348-0421.1996.tb03329.x
Shimizu T, Ohtani K, Ba-Thein W, Inui S, Nakamura S, Hayashi H
(1996).
Characterization of a toxin-deficient Clostridium perfringens strain, KZ1340.
-
DOI: 10.1016/s0034-5288(96)90090-9
Netherwood T, Chanter N, Mumford JA
(1996).
Improved isolation of Clostridium perfringens from foal faeces.
-
DOI: 10.1111/j.1574-6968.1997.tb10186.x
Ohtani K, Bando M, Swe T, Banu S, Oe M, Hayashi H, Shimizu T
(1997).
Collagenase gene (colA) is located in the 3'-flanking region of the perfringolysin O (pfoA) locus in Clostridium perfringens.
-
DOI: 10.1107/s0907444998005186
Basak AK, Howells A, Eaton JT, Moss DS, Naylor CE, Miller J, Titball RW
(1998).
Crystallization and preliminary X-ray diffraction studies of alpha-toxin from two different strains (NCTC8237 and CER89L43) of Clostridium perfringens.
-
DOI: 10.1111/j.1348-0421.1999.tb03355.x
Koyama M, Katayama S, Kaji M, Taniguchi Y, Matsushita O, Minami J, Morita S, Okabe A
(1999).
A Clostridium perfringens hem gene cluster contains a cysG(B) homologue that is involved in cobalamin biosynthesis.
-
DOI: 10.18926/AMO/30720
Katayama S, Nozu N, Yokoyama M, Hitsumoto Y
(2006).
Detection of fibronectin-binding proteins in Clostridium perfringens.
-
DOI: 10.1016/j.anaerobe.2009.03.001
Katayama S, Nozu N, Okuda M, Hirota S, Yamasaki T, Hitsumoto Y
(2009).
Characterization of two putative fibronectin-binding proteins of Clostridium perfringens.
-
DOI: 10.1107/S090744491003369X
Vachieri SG, Clark GC, Alape-Giron A, Flores-Diaz M, Justin N, Naylor CE, Titball RW, Basak AK
(2010).
Comparison of a nontoxic variant of Clostridium perfringens alpha-toxin with the toxic wild-type strain.
-
DOI: 10.1111/1348-0421.12036
Nagahama M, Oda M, Kobayashi K, Ochi S, Takagishi T, Shibutani M, Sakurai J
(2013).
A recombinant carboxy-terminal domain of alpha-toxin protects mice against Clostridium perfringens.
-
DOI: 10.1111/j.1472-765X.2005.01709.x
Skrivanova E, Marounek M, Dlouha G, Kanka J
(2005).
Susceptibility of Clostridium perfringens to C-C fatty acids.
-
DOI: 10.5851/kosfa.2014.34.5.614
Han SK, Shin MS, Park HE, Kim SY, Lee WK
(2014).
Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens.
-
DOI: 10.5851/kosfa.2018.38.1.88
Heo S, Kim MG, Kwon M, Lee HS, Kim GB
(2018).
Inhibition of Clostridium perfringens using Bacteriophages and Bacteriocin Producing Strains.
-
DOI: 10.1515/bchm3.1995.376.9.569
Roggentin P, Kleineidam RG, Schauer R
(1995).
Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp.
-
DOI: 10.4315/0362-028x-63.3.370
Scannell AG, Ross RP, Hill C, Arendt EK
(2000).
An effective lacticin biopreservative in fresh pork sausage.
-
DOI: 10.1016/j.anaerobe.2020.102177
Vieco-Saiz N, Belguesmia Y, Vachee A, Le Marechal C, Salvat G, Drider D
(2020).
Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain.
-
DOI: 10.1007/s12602-020-09657-4
Eveno M, Salouhi A, Belguesmia Y, Bazinet L, Gancel F, Fliss I, Drider D
(2021).
Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal's Droppings at the Zoological Garden of Lille, France.