Strain sc|0030412


StrainInfo: SI-ID 13629 T

Taxon
Corynebacterium glutamicum
Sample
Sewage (JP)
Cultures (32)
LMG 3730 = ATCC 13032 = CCM 2428 = IAM 12435 = IMET 10482 = JCM 1318 = LMG 19741 = NCIB 10025 = CCUG 27702 = CCRC 11384 = KCTC 1445 = NCIMB 10025 = IFO12168 = CIP 82.08 = CECT 4157 = AS 1.1886 = KCTC 9097 = NBRC 12168 = NCCB 70082 = NRRL B-2784 = NCCB 72028 = LMD 72.28 = HAMBI 2052 = BCRC 11384 = CCT 0542 = CCT 2736 = NCIM 2705 = CDBB 70 = IMET 10842 = CGMCC 1.1886 = DSM 20300 = CIP 82.8
Other Designations (18)
IMSNU 10063 = LMG 19741T QC oorspr = LMG 19741T QC 12/00 = IMSNU 21196 = DSMZ 20300 = ptcc1162 = KY 534 = IAW 26 = NERE 10026 = Kyowa Ferm. Ind. Co. 534 = CCTM 2336 = AJ 1502 = KY 9002 = HNCMB 132501 = Kyowa Ferm Ind534 = CCTM La 2336 = La 2336 = 534
Sequences (94)
Associated Publications (272)
  • DOI: 10.1128/jb.172.12.7241-7248.1990
    Broer S, Kramer R (1990). Lysine uptake and exchange in Corynebacterium glutamicum.
  • DOI: 10.1007/s10529-011-0723-4
    Shi F, Li Y (2011). Synthesis of gamma-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032.
  • DOI: 10.1016/j.enzmictec.2014.04.012
    Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X (2014). Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH.
  • DOI: 10.1016/j.jbiotec.2016.05.011
    Dhar KS, Wendisch VF, Nampoothiri KM (2016). Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.
  • DOI: 10.1002/bab.2324
    Yao C, Shi F, Wang X (2022). Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid.
  • Grishchenkov VG, Sukhodolets VV, Smirnov IuV (1978). [Characteristics of nucleoside and pyrimidine base metabolism in Corynebacterium glutamicum].
  • Vikhanskii IuD (1978). [Formation of B12 auxotrophs among spontaneous streptomycin-resistant mutants of Corynebacterium glutamicum].
  • DOI: 10.1128/jb.174.16.5462-5465.1992
    Jager W, Schafer A, Puhler A, Labes G, Wohlleben W (1992). Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans.
  • DOI: 10.1016/0378-1119(91)90298-p
    Sonnen H, Thierbach G, Kautz S, Kalinowski J, Schneider J, Puhler A, Kutzner HJ (1991). Characterization of pGA1, a new plasmid from Corynebacterium glutamicum LP-6.
  • DOI: 10.1111/j.1365-2958.1991.tb01893.x
    Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991). Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum.
  • DOI: 10.1007/BF00262424
    Kalinowski J, Bachmann B, Thierbach G, Puhler A (1990). Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspartate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum.
  • DOI: 10.1016/0378-1119(89)90072-3
    O'Regan M, Thierbach G, Bachmann B, Villeval D, Lepage P, Viret JF, Lemoine Y (1989). Cloning and nucleotide sequence of the phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032.
  • DOI: 10.1007/BF00413136
    Ebbighausen H, Weil B, Kramer R (1989). Transport of branched-chain amino acids in Corynebacterium glutamicum.
  • DOI: 10.1016/0003-2697(88)90036-x
    Kahana ZE, Gopher A, Dorsman M, Lapidot A (1988). Microbial synthesis of L-[15N]leucine L-[15N]isoleucine, and L-[3-13C]-and L-[3'-13C]isoleucines studied by nuclear magnetic resonance and gas chromatography-mass spectrometry.
  • DOI: 10.1006/plas.1995.1018
    Tauch A, Kassing F, Kalinowski J, Puhler A (1995). The erythromycin resistance gene of the Corynebacterium xerosis R-plasmid pTP10 also carrying chloramphenicol, kanamycin, and tetracycline resistances is capable of transposition in Corynebacterium glutamicum.
  • DOI: 10.1128/jb.177.16.4690-4695.1995
    Farwick M, Siewe RM, Kramer R (1995). Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum.
  • DOI: 10.1099/00221287-140-10-2841
    Correia A, Martin JF, Castro JM (1994). Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns.
  • DOI: 10.1099/13500872-142-1-99
    Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996). Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway.
  • DOI: 10.1007/s002030050359
    Jager W, Peters-Wendisch PG, Kalinowski J, Puhler A (1996). A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins.
  • DOI: 10.1007/BF02173771
    Bathe B, Kalinowski J, Puhler A (1996). A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome.
  • DOI: 10.1128/jb.179.7.2449-2451.1997
    Jager W, Kalinowski J, Puhler A (1997). A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli.
  • DOI: 10.1016/s0378-1119(97)00519-2
    Schafer A, Tauch A, Droste N, Puhler A, Kalinowski J (1997). The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain.
  • DOI: 10.1007/s002030050576
    Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J (1998). Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product.
  • Bukanov NO, Nashchokina OO, Borinskaia SA, Lobashev AV, Fonshtein MIu, Gusiatiner MM, Debabov VG, Iankovskii NK (1998). [Construction and characteristics of a cosmid library of genes of the bacterium Cornyebacterium glutamicum ATSS13032].
  • DOI: 10.1099/00221287-144-7-1853
    Wehmeier L, Schafer A, Burkovski A, Krmer R, Mechold U, Malke H, Phler A, Kalinowski J (1998). The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism.
  • DOI: 10.1128/AEM.65.3.1099-1109.1999
    Tesch M, de Graaf AA, Sahm H (1999). In vivo fluxes in the ammonium-assimilatory pathways in corynebacterium glutamicum studied by 15N nuclear magnetic resonance.
  • DOI: 10.1099/13500872-145-4-915
    Amador E, Castro JM, Correia A, Martin JF (1999). Structure and organization of the rrnD operon of 'Brevibacterium lactofermentum': analysis of the 16S rRNA gene.
  • DOI: 10.1111/j.1574-6968.1999.tb13503.x
    Tauch A, Krieft S, Puhler A, Kalinowski J (1999). The tetAB genes of the Corynebacterium striatum R-plasmid pTP10 encode an ABC transporter and confer tetracycline, oxytetracycline and oxacillin resistance in Corynebacterium glutamicum.
  • DOI: 10.1099/13500872-145-7-1595
    Oehlmann W, Auling G (1999). Ribonucleotide reductase (RNR) of Corynebacterium glutamicum ATCC 13032--genetic characterization of a second class IV enzyme.
  • DOI: 10.1007/s002530051557
    van der Rest ME, Lange C, Molenaar D (1999). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA.
  • DOI: 10.1007/s004380051119
    Quast K, Bathe B, Puhler A, Kalinowski J (1999). The Corynebacterium glutamicum insertion sequence ISCg2 prefers conserved target sequences located adjacent to genes involved in aspartate and glutamate metabolism.
  • DOI: 10.1099/00221287-147-3-691
    Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Puhler A, Martin JF, Kalinowski J (2001). A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation.
  • DOI: 10.1111/j.1574-6968.2001.tb10973.x
    Schulz AA, Collett HJ, Reid SJ (2001). Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/s0168-1656(01)00443-6
    Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Ruckert C, Schischka N, Wrenger C, Hoheisel J, Mockel B, Huthmacher K, Pfefferle W, Puhler A, Kalinowski J (2002). Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library.
  • DOI: 10.1016/s0168-1656(02)00159-1
    Tauch A, Gotker S, Puhler A, Kalinowski J, Thierbach G (2002). The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains.
  • DOI: 10.1128/AEM.68.12.5843-5859.2002
    Wittmann C, Heinzle E (2002). Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.
  • DOI: 10.1128/AEM.69.5.2521-2532.2003
    Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003). Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine.
  • DOI: 10.1007/s00203-003-0556-1
    Brand S, Niehaus K, Puhler A, Kalinowski J (2003). Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope.
  • DOI: 10.1007/s00253-003-1328-1
    Ikeda M, Nakagawa S (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
  • DOI: 10.1016/S0378-1097(03)00396-3
    De Sousa-D'Auria C, Kacem R, Puech V, Tropis M, Leblon G, Houssin C, Daffe M (2003). New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum.
  • DOI: 10.1046/j.1365-2958.2003.03625.x
    Wolf A, Kramer R, Morbach S (2003). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress.
  • DOI: 10.1128/JB.185.16.4779-4786.2003
    Costa-Riu N, Burkovski A, Kramer R, Benz R (2003). PorA represents the major cell wall channel of the Gram-positive bacterium Corynebacterium glutamicum.
  • DOI: 10.1016/s0168-1656(03)00154-8
    Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
  • DOI: 10.1016/s0168-1656(03)00156-1
    Hartmann M, Tauch A, Eggeling L, Bathe B, Mockel B, Puhler A, Kalinowski J (2003). Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum.
  • DOI: 10.1046/j.1365-2958.2003.03754.x
    Costa-Riu N, Maier E, Burkovski A, Kramer R, Lottspeich F, Benz R (2003). Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium Corynebacterium glutamicum.
  • DOI: 10.1002/rcm.1251
    Yang TH, Wittmann C, Heinzle E (2003). Dynamic calibration and dissolved gas analysis using membrane inlet mass spectrometry for the quantification of cell respiration.
  • DOI: 10.1016/j.febslet.2004.07.067
    Steger R, Weinand M, Kramer R, Morbach S (2004). LcoP, an osmoregulated betaine/ectoine uptake system from Corynebacterium glutamicum.
  • DOI: 10.1007/s00203-004-0713-1
    Hartmann M, Barsch A, Niehaus K, Puhler A, Tauch A, Kalinowski J (2004). The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
  • DOI: 10.1128/JB.187.3.884-889.2005
    Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF (2005). Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone.
  • DOI: 10.1016/j.femsle.2004.11.047
    Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005). Formation of volutin granules in Corynebacterium glutamicum.
  • DOI: 10.1016/j.femsle.2005.01.053
    Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK (2005). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1111/j.1365-2958.2005.04586.x
    Rey DA, Nentwich SS, Koch DJ, Ruckert C, Puhler A, Tauch A, Kalinowski J (2005). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/1471-2164-6-86
    Brune I, Brinkrolf K, Kalinowski J, Puhler A, Tauch A (2005). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences.
  • DOI: 10.1007/BF02879662
    Ruan H, Gerstmeir R, Schnicke S, Eikmanns BJ (2005). The amrG1 gene is involved in the activation of acetate in Corynebacterium glutamicum.
  • Yu BQ, Shen W, Wang ZX, Zhuge J (2005). [Glyoxylate cycle is required for the overproduction of glutamate but is not essential for Corynebacterium glutamicum growth on glucose].
  • DOI: 10.1016/j.bbamem.2005.07.011
    Hunten P, Costa-Riu N, Palm D, Lottspeich F, Benz R (2005). Identification and characterization of PorH, a new cell wall channel of Corynebacterium glutamicum.
  • DOI: 10.1111/j.1365-2958.2005.04836.x
    Koch DJ, Ruckert C, Albersmeier A, Huser AT, Tauch A, Puhler A, Kalinowski J (2005). The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
  • DOI: 10.1128/AEM.71.10.6104-6114.2005
    Koch DJ, Ruckert C, Rey DA, Mix A, Puhler A, Kalinowski J (2005). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
  • DOI: 10.1128/AEM.71.10.6206-6215.2005
    Ordonez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005). Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1002/pmic.200500144
    Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J (2006). The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1128/JB.188.2.609-618.2006
    Kromer JO, Heinzle E, Schroder H, Wittmann C (2006). Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains.
  • DOI: 10.1099/mic.0.28383-0
    Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF (2006). Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.
  • DOI: 10.1186/1471-2164-7-21
    Brune I, Werner H, Huser AT, Kalinowski J, Puhler A, Tauch A (2006). The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
  • DOI: 10.1099/mic.0.28673-0
    Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Puhler A, Kalinowski J (2006). The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032.
  • DOI: 10.1007/s00253-006-0414-6
    Zimmermann HF, Anderlei T, Buchs J, Binder M (2006). Oxygen limitation is a pitfall during screening for industrial strains.
  • Hao N, Zhao Z, Wang Y, Zhang YZ, Ding JY (2006). [Cloning, sequence analysis and expression of N-acetylglutamate kinase gene in Corynebacterium crenatum].
  • DOI: 10.1016/j.jbiotec.2006.04.002
    Oikawa T, Tauch A, Schaffer S, Fujioka T (2006). Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase.
  • DOI: 10.1016/j.bbrc.2006.05.143
    Xu Y, Yan DZ, Zhou NY (2006). Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/1471-2164-7-205
    Mormann S, Lomker A, Ruckert C, Gaigalat L, Tauch A, Puhler A, Kalinowski J (2006). Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway.
  • DOI: 10.1128/AEM.01818-06
    Kabus A, Niebisch A, Bott M (2006). Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
  • DOI: 10.1159/000096458
    Moon MW, Park SY, Choi SK, Lee JK (2007). The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
  • DOI: 10.1186/1471-2164-8-4
    Larisch C, Nakunst D, Huser AT, Tauch A, Kalinowski J (2007). The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase.
  • DOI: 10.1016/j.jbiotec.2006.12.013
    Brinkrolf K, Brune I, Tauch A (2006). The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.
  • DOI: 10.1128/JB.01876-06
    Brune I, Jochmann N, Brinkrolf K, Huser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Puhler A, Tauch A (2007). The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
  • DOI: 10.1007/s00253-007-0879-y
    Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H (2007). Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor.
  • DOI: 10.1128/JB.00382-07
    Nakunst D, Larisch C, Huser AT, Tauch A, Puhler A, Kalinowski J (2007). The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes.
  • DOI: 10.1007/s00253-007-0987-8
    Baumchen C, Bringer-Meyer S (2007). Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum.
  • DOI: 10.1016/j.jbiotec.2007.05.026
    Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007). Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
  • DOI: 10.1186/1471-2199-8-104
    Gaigalat L, Schluter JP, Hartmann M, Mormann S, Tauch A, Puhler A, Kalinowski J (2007). The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum.
  • DOI: 10.1002/pmic.200700269
    Li L, Wada M, Yokota A (2007). Cytoplasmic proteome reference map for a glutamic acid-producing Corynebacterium glutamicum ATCC 14067.
  • DOI: 10.1159/000115846
    Lozada-Ramirez JD, Martinez-Martinez I, Sanchez-Ferrer A, Garcia-Carmona F (2008). S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum: cloning, overexpression, purification, and biochemical characterization.
  • DOI: 10.1099/mic.0.2007/014001-0
    Brinkrolf K, Ploger S, Solle S, Brune I, Nentwich SS, Huser AT, Kalinowski J, Puhler A, Tauch A (2008). The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
  • DOI: 10.1128/JB.00310-08
    Frunzke J, Bramkamp M, Schweitzer JE, Bott M (2008). Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
  • DOI: 10.1016/j.jbiotec.2008.05.011
    Kohl TA, Baumbach J, Jungwirth B, Puhler A, Tauch A (2008). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator.
  • DOI: 10.1128/AEM.00262-08
    Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ (2008). Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features.
  • DOI: 10.1128/JB.00780-08
    Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2008). Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
  • DOI: 10.1186/1471-2164-9-483
    Ruckert C, Milse J, Albersmeier A, Koch DJ, Puhler A, Kalinowski J (2008). The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules.
  • DOI: 10.1016/0039-9140(95)01594-2
    Lei CH, Bao YF, Deng JQ, Lei CX (1995). Studies on urea biosensors based on immobilized corynebacterium glutamicum and their kinetic response processes.
  • DOI: 10.1002/bit.22067
    Kjeldsen KR, Nielsen J (2009). In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network.
  • DOI: 10.1271/bbb.80434
    Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008). Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase.
  • DOI: 10.1111/j.1574-6968.2008.01425.x
    Baumchen C, Krings E, Bringer S, Eggeling L, Sahm H (2008). Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
  • DOI: 10.1186/1471-2180-8-225
    Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martin JF (2008). Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes.
  • DOI: 10.1099/mic.0.020388-0
    Nentwich SS, Brinkrolf K, Gaigalat L, Huser AT, Rey DA, Mohrbach T, Marin K, Puhler A, Tauch A, Kalinowski J (2009). Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
  • Zhang C, Zhao Z, Zhang Y, Wang Y, Ding J (2008). [Cloning, expression and sequence analysis of DS I gene in Corynebacterium pekinense AS1.299 and PD-67].
  • DOI: 10.1099/mic.0.022004-0
    Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A (2009). Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
  • DOI: 10.1099/mic.0.025841-0
    Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A (2009). Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays.
  • DOI: 10.1007/s10295-009-0569-0
    Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y (2009). Double deletion of dtsR1 and pyc induce efficient L: -glutamate overproduction in Corynebacterium glutamicum.
  • DOI: 10.1007/s00253-009-2066-9
    Cha PH, Park SY, Moon MW, Subhadra B, Oh TK, Kim E, Kim JF, Lee JK (2009). Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/j.jbiotec.2009.08.005
    Kohl TA, Tauch A (2009). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.
  • DOI: 10.1186/1471-2164-11-12
    Schroder J, Jochmann N, Rodionov DA, Tauch A (2010). The Zur regulon of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/j.bmc.2010.01.013
    Bonazzi S, Barbaras D, Patiny L, Scopelliti R, Schneider P, Cole ST, Kaiser M, Brun R, Gademann K (2010). Antimalarial and antitubercular nostocarboline and eudistomin derivatives: synthesis, in vitro and in vivo biological evaluation.
  • DOI: 10.1016/j.ymben.2010.01.004
    Sawada K, Zen-in S, Wada M, Yokota A (2010). Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1111/j.1574-6968.2009.01884.x
    Park SY, Moon MW, Subhadra B, Lee JK (2010). Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression.
  • DOI: 10.1007/s10295-010-0760-3
    Hwang GH, Cho JY (2010). Identification of a suppressor gene for the arginine-auxotrophic argJ mutation in Corynebacterium glutamicum.
  • DOI: 10.1111/j.1574-6968.2010.01971.x
    Park M, Cho S, Lee H, Sibley CH, Rhie H (2010). Alternative thymidylate synthase, ThyX, involved in Corynebacterium glutamicum ATCC 13032 survival during stationary growth phase.
  • DOI: 10.1016/j.jprot.2010.07.006
    Franzel B, Poetsch A, Trotschel C, Persicke M, Kalinowski J, Wolters DA (2010). Quantitative proteomic overview on the Corynebacterium glutamicuml-lysine producing strain DM1730.
  • DOI: 10.1002/jobm.201000053
    Yang YF, Zhang JJ, Wang SH, Zhou NY (2010). Purification and characterization of the ncgl2923 -encoded 3-hydroxybenzoate 6-hydroxylase from Corynebacterium glutamicum.
  • DOI: 10.1016/j.jbiotec.2010.08.016
    Persicke M, Plassmeier J, Neuweger H, Ruckert C, Puhler A, Kalinowski J (2010). Size exclusion chromatography: an improved method to harvest Corynebacterium glutamicum cells for the analysis of cytosolic metabolites.
  • DOI: 10.1099/mic.0.044818-0
    Jochmann N, Gotker S, Tauch A (2010). Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/1471-2180-10-321
    Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF (2010). Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
  • DOI: 10.1271/bbb.100523
    Matsui D, Oikawa T (2010). Detection of D-ornithine extracellularly produced by Corynebacterium glutamicum ATCC 13032::argF.
  • Hao N, Yan M, Zhou H, Liu HM, Cai P, Ouyang PK (2010). The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum.
  • Ji W, Zhao Z, Zhang Y, Wang Y, Ding J (2010). [Corynebacterium pekinense transketolase: gene cloning, sequence analysis and expression].
  • DOI: 10.1002/biot.201000307
    Neuner A, Heinzle E (2011). Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering.
  • DOI: 10.1007/s00203-011-0711-z
    Sharkey MA, Maher MA, Guyonvarch A, Engel PC (2011). Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD- phenotype in C. glutamicum: the issue of reversibility re-examined.
  • DOI: 10.1099/ijs.0.030429-0
    Zhou Z, Yuan M, Tang R, Chen M, Lin M, Zhang W (2011). Corynebacterium deserti sp. nov., isolated from desert sand.
  • DOI: 10.1128/JB.06074-11
    Lv Y, Wu Z, Han S, Lin Y, Zheng S (2011). Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate.
  • DOI: 10.1016/j.bbabio.2011.10.006
    Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M (2011). Physiology and global gene expression of a Corynebacterium glutamicum DeltaF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
  • DOI: 10.1007/s00284-011-0042-y
    Xu M, Rao Z, Dou W, Jin J, Xu Z (2011). Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.
  • DOI: 10.1016/j.jbiotec.2011.12.001
    Brune I, Gotker S, Schneider J, Rodionov DA, Tauch A (2011). Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/j.jbiosc.2011.11.021
    Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, Yokota A (2011). Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum.
  • DOI: 10.1007/s00253-011-3769-2
    Lozada-Ramirez JD, Sanchez-Ferrer A, Garcia-Carmona F (2011). Enzymatic synthesis of S-adenosylhomocysteine: immobilization of recombinant S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum (ATCC 13032).
  • DOI: 10.1111/j.1574-6968.2011.02494.x
    Cho S, Yang S, Rhie H (2012). The gene encoding the alternative thymidylate synthase ThyX is regulated by sigma factor SigB in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/j.jbiotec.2012.01.003
    Krause JP, Polen T, Youn JW, Emer D, Eikmanns BJ, Wendisch VF (2012). Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum.
  • DOI: 10.1128/AEM.07790-11
    Litsanov B, Brocker M, Bott M (2012). Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
  • DOI: 10.1007/s12275-012-1459-0
    Yang Y, Shi F, Tao G, Wang X (2012). Purification and structure analysis of mycolic acids in Corynebacterium glutamicum.
  • DOI: 10.1007/s00253-012-4060-x
    Bott M, Brocker M (2012). Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets.
  • DOI: 10.1007/s00726-012-1308-9
    Hou X, Chen X, Zhang Y, Qian H, Zhang W (2012). (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.
  • DOI: 10.1007/s11427-012-4304-0
    Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T (2012). Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
  • DOI: 10.1128/AEM.01588-12
    Chen X, Kohl TA, Ruckert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ (2012). Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
  • DOI: 10.1099/mic.0.059196-0
    Witthoff S, Eggeling L, Bott M, Polen T (2012). Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate.
  • DOI: 10.1371/journal.pone.0038701
    Xu Y, Wang SH, Chao HJ, Liu SJ, Zhou NY (2012). Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum.
  • DOI: 10.1007/s12275-012-2109-2
    Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ (2012). Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.
  • DOI: 10.1002/bit.24815
    Regestein L, Maskow T, Tack A, Knabben I, Wunderlich M, Lerchner J, Buchs J (2013). Non-invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry.
  • DOI: 10.1016/j.bbamem.2013.01.001
    Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Kramer R (2013). Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives.
  • DOI: 10.1128/AEM.03231-12
    Lindner SN, Petrov DP, Hagmann CT, Henrich A, Kramer R, Eikmanns BJ, Wendisch VF, Seibold GM (2013). Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
  • DOI: 10.1016/j.bbabio.2013.02.004
    Koch-Koerfges A, Pfelzer N, Platzen L, Oldiges M, Bott M (2013). Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
  • DOI: 10.1099/mic.0.068692-0
    Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF (2013). Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.
  • DOI: 10.1016/j.plasmid.2013.07.001
    Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X (2013). Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
  • DOI: 10.1128/AEM.01634-13
    Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J (2013). Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
  • DOI: 10.1186/1471-2164-14-714
    Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J (2013). Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.4014/jmb.1310.10031
    Subhadra B, Lee JK (2013). Elucidation of the regulation of ethanol catabolic genes and ptsG using a glxR and adenylate cyclase gene (cyaB) deletion mutants of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1128/JB.01018-13
    Nanda AM, Heyer A, Kramer C, Grunberger A, Kohlheyer D, Frunzke J (2013). Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level.
  • DOI: 10.1007/s00253-013-5359-y
    Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF (2013). Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
  • DOI: 10.1007/s12275-013-3236-0
    Kim HI, Nam JY, Cho JY, Lee CS, Park YJ (2013). Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.
  • DOI: 10.1186/1475-2859-13-6
    Kass F, Junne S, Neubauer P, Wiechert W, Oldiges M (2014). Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum.
  • DOI: 10.1080/03601234.2014.868668
    Saengkerdsub S, Muthaiyan A, Lingbeck JM, O'Bryan CA, Crandall PG, Ricke SC (2014). Identification and methionine analog tolerance of environmental bacterial isolates selected on methionine analog containing medium.
  • DOI: 10.1002/pmic.201300531
    Kuberl A, Franzel B, Eggeling L, Polen T, Wolters DA, Bott M (2014). Pupylated proteins in Corynebacterium glutamicum revealed by MudPIT analysis.
  • DOI: 10.1093/protein/gzu019
    Zhu M, Sun W, Wang Y, Meng J, Zhang D, Guo T, Ouyang P, Ying H, Xie J (2014). Engineered cytidine triphosphate synthetase with reduced product inhibition.
  • DOI: 10.1007/s00449-014-1234-1
    Kass F, Prasad A, Tillack J, Moch M, Giese H, Buchs J, Wiechert W, Oldiges M (2014). Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum.
  • DOI: 10.2323/jgam.60.112
    Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H (2014). Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
  • DOI: 10.1016/j.mimet.2014.07.028
    Krylov AA, Kolontaevsky EE, Mashko SV (2014). Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
  • DOI: 10.1016/j.jbiotec.2014.07.452
    Milse J, Petri K, Ruckert C, Kalinowski J (2014). Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon.
  • DOI: 10.1007/s00253-014-5924-z
    Tsuge Y, Hori Y, Kudou M, Ishii J, Hasunuma T, Kondo A (2014). Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.
  • DOI: 10.1002/biot.201400041
    Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S (2014). Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
  • DOI: 10.1002/bit.25440
    Kim SY, Lee J, Lee SY (2014). Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
  • DOI: 10.1002/bab.1290
    Qin T, Hu X, Hu J, Wang X (2014). Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
  • DOI: 10.1007/s10295-014-1561-x
    Hao N, Mu J, Hu N, Xu S, Yan M, Li Y, Guo K, Xu L (2014). Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.
  • DOI: 10.1002/bab.1353
    Hao N, Mu J, Hu N, Xu S, Shen P, Yan M, Li Y, Xu L (2015). Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum.
  • DOI: 10.1007/s10529-015-1775-7
    Lee B, Lee S, Kim H, Jeong K, Park J, Lee E, Lee J (2015). Biotransformation of oleic acid into 10-ketostearic acid by recombinant Corynebacterium glutamicum-based biocatalyst.
  • DOI: 10.1093/femsle/fnu001
    Baumgart M, Frunzke J (2014). The manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum.
  • DOI: 10.1007/s10529-015-1822-4
    Wang N, Ni Y, Shi F (2015). Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum.
  • DOI: 10.1371/journal.pone.0123413
    Oertel D, Schmitz S, Freudl R (2015). A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032.
  • DOI: 10.1007/s10529-015-1824-2
    Ameria SP, Jung HS, Kim HS, Han SS, Kim HS, Lee JH (2015). Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin.
  • DOI: 10.1186/s12864-015-1631-0
    Abreu VA, Almeida S, Tiwari S, Hassan SS, Mariano D, Silva A, Baumbach J, Azevedo V, Rottger R (2015). CMRegNet-An interspecies reference database for corynebacterial and mycobacterial regulatory networks.
  • DOI: 10.1016/j.ymben.2015.06.003
    Otten A, Brocker M, Bott M (2015). Metabolic engineering of Corynebacterium glutamicum for the production of itaconate.
  • DOI: 10.1002/bit.25692
    Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ (2015). Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum.
  • DOI: 10.1016/j.jbiosc.2015.06.008
    Wada M, Sawada K, Ogura K, Shimono Y, Hagiwara T, Sugimoto M, Onuki A, Yokota A (2015). Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1016/j.enzmictec.2015.06.003
    Han G, Hu X, Wang X (2015). Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum.
  • DOI: 10.1111/mmi.13147
    Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, Noh K, Frunzke J (2015). Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
  • DOI: 10.1002/bab.1425
    Han G, Hu X, Wang X (2015). Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine.
  • DOI: 10.1002/btpr.2180
    Deng Y, Mao Y, Zhang X (2016). Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.
  • DOI: 10.1016/j.jbiotec.2015.10.019
    Walter F, Grenz S, Ortseifen V, Persicke M, Kalinowski J (2015). Corynebacterium glutamicum ggtB encodes a functional gamma-glutamyl transpeptidase with gamma-glutamyl dipeptide synthetic and hydrolytic activity.
  • DOI: 10.1002/bit.25886
    Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z (2015). Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
  • DOI: 10.1016/j.enzmictec.2015.11.001
    Han G, Hu X, Qin T, Li Y, Wang X (2015). Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine.
  • DOI: 10.1016/j.jbiotec.2016.01.010
    Gui Y, Ma Y, Xu Q, Zhang C, Xie X, Chen N (2016). Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.
  • DOI: 10.1186/s12934-016-0420-z
    Lee J, Saddler JN, Um Y, Woo HM (2016). Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
  • DOI: 10.1016/j.jbiosc.2015.12.023
    Yanase M, Aikoh T, Sawada K, Ogura K, Hagiwara T, Imai K, Wada M, Yokota A (2016). Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite.
  • DOI: 10.3390/ijms17030353
    Kim HI, Kim JH, Park YJ (2016). Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.
  • DOI: 10.1007/s10482-016-0719-0
    Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q (2016). Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
  • DOI: 10.1016/j.jprot.2016.06.030
    Perez-Garcia F, Vasco-Cardenas MF, Barreiro C (2016). Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations.
  • DOI: 10.1093/nar/gkw692
    Pfeifer E, Hunnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J (2016). Silencing of cryptic prophages in Corynebacterium glutamicum.
  • DOI: 10.1099/ijsem.0.001509
    Zimmermann J, Ruckert C, Kalinowski J, Lipski A (2016). Corynebacterium crudilactis sp. nov., isolated from raw cow's milk.
  • DOI: 10.1016/j.mimet.2016.10.019
    Li H, Zhang L, Guo W, Xu D (2016). Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
  • DOI: 10.1007/10_2016_31
    Yokota A, Sawada K, Wada M (2017). Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.
  • DOI: 10.1093/protein/gzw061
    Eppinger E, Stolz A (2016). Expansion of the substrate range of the gentisate 1,2-dioxygenase from Corynebacterium glutamicum for the conversion of monohydroxylated benzoates.
  • DOI: 10.1038/srep44258
    Fang B, Xu H, Liu Y, Qi F, Zhang W, Chen H, Wang C, Wang Y, Yang W, Li S (2017). Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleT(JE).
  • DOI: 10.1007/s13205-015-0275-8
    Razak MA, Viswanath B (2015). Comparative studies for the biotechnological production of L-Lysine by immobilized cells of wild-type Corynebacterium glutamicum ATCC 13032 and mutant MH 20-22 B.
  • DOI: 10.1007/s00253-017-8222-8
    Shen J, Chen J, Jensen PR, Solem C (2017). A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries.
  • DOI: 10.1007/s00203-017-1377-y
    Kautzmann F, Altenbuchner J (2017). Inactivation of genes involved in base excision repair of Corynebacterium glutamicum and survival of the mutants in presence of various mutagens.
  • DOI: 10.2323/jgam.2016.09.004
    Nishio Y, Koseki C, Tonouchi N, Matsui K, Sugimoto S, Usuda Y (2017). Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.
  • DOI: 10.1007/s12275-017-6592-3
    Yu QL, Yan ZF, He X, Tian FH, Jia CW, Li CT (2017). Corynebacterium defluvii sp. nov., isolated from Sewage.
  • DOI: 10.1007/s10295-017-1945-9
    Kim H, Park S, Cho S, Yang J, Jeong K, Park J, Lee J (2017). Bioprocess engineering to produce 9-(nonanoyloxy) nonanoic acid by a recombinant Corynebacterium glutamicum-based biocatalyst.
  • DOI: 10.1186/s13068-017-0856-3
    Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T (2017). A new genome-scale metabolic model of Corynebacterium glutamicum and its application.
  • DOI: 10.3389/fmicb.2017.01429
    Forde AJ, Albrecht N, Klingl A, Donovan C, Bramkamp M (2017). Polymerization Dynamics of the Prophage-Encoded Actin-Like Protein AlpC Is Influenced by the DNA-Binding Adapter AlpA.
  • DOI: 10.3389/fmicb.2017.01601
    Ruwe M, Kalinowski J, Persicke M (2017). Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum.
  • DOI: 10.1080/09168451.2017.1372182
    Komine-Abe A, Nagano-Shoji M, Kubo S, Kawasaki H, Yoshida M, Nishiyama M, Kosono S (2017). Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum.
  • DOI: 10.1002/bab.1622
    Gao Y, Hu X, Wang J, Li H, Wang X (2017). Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869.
  • DOI: 10.1186/s12934-017-0815-5
    Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y (2017). Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
  • DOI: 10.1038/s41598-017-17014-9
    Pfeifer E, Gatgens C, Polen T, Frunzke J (2017). Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium.
  • DOI: 10.1007/s00705-018-3867-x
    Yomantas YAV, Abalakina EG, Lobanova JS, Mamontov VA, Stoynova NV, Mashko SV (2018). Complete nucleotide sequences and annotations of phi673 and phi674, two newly characterised lytic phages of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1007/s00253-018-9095-1
    Zhang Q, Zheng X, Wang Y, Yu J, Zhang Z, Dele-Osibanjo T, Zheng P, Sun J, Jia S, Ma Y (2018). Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum.
  • DOI: 10.1016/j.jbiotec.2018.07.016
    Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH (2018). Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
  • DOI: 10.1186/s12934-018-0990-z
    Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG (2018). Metabolic engineering of Corynebacterium glutamicum for anthocyanin production.
  • DOI: 10.1186/s12934-018-1031-7
    Ma Y, Cui Y, Du L, Liu X, Xie X, Chen N (2018). Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum.
  • DOI: 10.1007/s10529-018-2627-z
    Tan Z, Zhao J, Chen J, Rao D, Zhou W, Chen N, Zheng P, Sun J, Ma Y (2018). Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design.
  • DOI: 10.13345/j.cjb.180041
    Wang Y, Liu J, Ni X, Lei Y, Zheng P, Diao A (2018). [Screening efficient constitutive promoters in Corynebacterium glutamicum based on time-series transcriptome analysis].
  • DOI: 10.4014/jmb.1805.05013
    Ma Y, Chen Q, Cui Y, Du L, Shi T, Xu Q, Ma Q, Xie X, Chen N (2018). Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains.
  • DOI: 10.3389/fmicb.2018.03287
    Dostalova H, Busche T, Holatko J, Rucka L, Stepanek V, Barvik I, Nesvera J, Kalinowski J, Patek M (2019). Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/s13068-019-1381-3
    Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A (2019). Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates.
  • DOI: 10.1186/s12934-019-1116-y
    Zhang W, Yang Y, Liu X, Liu C, Bai Z (2019). Development of a secretory expression system with high compatibility between expression elements and an optimized host for endoxylanase production in Corynebacterium glutamicum.
  • DOI: 10.1021/acs.jafc.9b01529
    Shen J, Chen J, Jensen PR, Solem C (2019). Sweet As Sugar-Efficient Conversion of Lactose into Sweet Sugars Using a Novel Whole-Cell Catalyst.
  • DOI: 10.1016/j.bios.2019.111332
    Dantism S, Rohlen D, Selmer T, Wagner T, Wagner P, Schoning MJ (2019). Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system.
  • DOI: 10.1016/j.synbio.2019.05.002
    Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L (2019). Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis.
  • DOI: 10.1007/s00253-019-09951-4
    Cui CH, Jeon BM, Fu Y, Im WT, Kim SC (2019). High-density immobilization of a ginsenoside-transforming beta-glucosidase for enhanced food-grade production of minor ginsenosides.
  • DOI: 10.1016/j.ymben.2019.08.011
    Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, Zheng P, Zhang X, Shi J, Xu Z, Gross RA, Koffas MAG (2019). Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-gamma-glutamic acid.
  • DOI: 10.1080/09168451.2019.1693250
    Zhang X, Wang D, Duan Y, Zheng X, Lin Y, Liang S (2019). Production of lycopene by metabolically engineered Pichia pastoris.
  • DOI: 10.1007/s00253-019-10255-w
    Ma H, Fan X, Cai N, Zhang D, Zhao G, Wang T, Su R, Yuan M, Ma Q, Zhang C, Xu Q, Xie X, Chen N, Li Y (2019). Efficient fermentative production of L-theanine by Corynebacterium glutamicum.
  • DOI: 10.1042/BCJ20190812
    Susmitha A, Nampoothiri KM, Bajaj H (2019). Insights into the biochemical and functional characterization of sortase E transpeptidase of Corynebacterium glutamicum.
  • DOI: 10.1016/j.mec.2019.e00115
    Eng T, Sasaki Y, Herbert RA, Lau A, Trinh J, Chen Y, Mirsiaghi M, Petzold CJ, Mukhopadhyay A (2019). Production of tetra-methylpyrazine using engineered Corynebacterium glutamicum.
  • DOI: 10.1099/ijsem.0.003993
    Nantapong N, Matsutani M, Kanchanasin P, Kataoka N, Paisrisan P, Matsushita K, Tanasupawat S (2020). Corynebacterium suranareeae sp. nov., a glutamate producing bacterium isolated from soil and its complete genome-based analysis.
  • DOI: 10.1007/s13205-020-2114-9
    Huang M, Zhao Y, Li R, Huang W, Chen X (2020). Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering.
  • DOI: 10.1007/s00253-020-10517-y
    Wu M, Xu Y, Yang J, Shang G (2020). Homing endonuclease I-SceI-mediated Corynebacterium glutamicum ATCC 13032 genome engineering.
  • DOI: 10.1186/s13568-020-01003-9
    Sundar MSL, Susmitha A, Rajan D, Hannibal S, Sasikumar K, Wendisch VF, Nampoothiri KM (2020). Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess.
  • DOI: 10.1186/s12934-020-01376-3
    Li N, Zeng W, Xu S, Zhou J (2020). Obtaining a series of native gradient promoter-5'-UTR sequences in Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1128/MRA.00430-20
    Kawaguchi H, Sazuka T, Kondo A (2020). Complete and Draft Genome Sequences of Amino Acid-Producing Corynebacterium glutamicum Strains ATCC 21799 and ATCC 31831 and Their Genomic Islands.
  • DOI: 10.1007/s10529-020-03000-1
    Luo G, Zhao N, Jiang S, Zheng S (2020). Application of RecET-Cre/loxP system in Corynebacterium glutamicum ATCC14067 for L-leucine production.
  • DOI: 10.1111/mmi.14618
    Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K (2020). Elongation factor P is required for EII(Glc) translation in Corynebacterium glutamicum due to an essential polyproline motif.
  • DOI: 10.3389/fbioe.2020.584614
    Graf M, Haas T, Teleki A, Feith A, Cerff M, Wiechert W, Noh K, Busche T, Kalinowski J, Takors R (2020). Revisiting the Growth Modulon of Corynebacterium glutamicum Under Glucose Limited Chemostat Conditions.
  • DOI: 10.3389/fbioe.2020.602936
    Kappelmann J, Klein B, Papenfuss M, Lange J, Blombach B, Takors R, Wiechert W, Polen T, Noack S (2021). Comprehensive Analysis of C. glutamicum Anaplerotic Deletion Mutants Under Defined d-Glucose Conditions.
  • DOI: 10.1021/acssynbio.0c00508
    Shemyakina AO, Grechishnikova EG, Novikov AD, Asachenko AF, Kalinina TI, Lavrov KV, Yanenko AS (2021). A Set of Active Promoters with Different Activity Profiles for Superexpressing Rhodococcus Strain.
  • DOI: 10.1016/j.jbiotec.2021.03.014
    Chen C, Cui Z, Zhao J, Li S, Ren X, Chen T, Wang Z (2021). Improving diacetyl production in Corynebacterium glutamicum via modifying respiratory chain.
  • DOI: 10.3390/v13030495
    Hunnefeld M, Viets U, Sharma V, Wirtz A, Hardy A, Frunzke J (2021). Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/s13568-021-01217-5
    Wordemann R, Wiefel L, Wendisch VF, Steinbuchel A (2021). Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum.
  • DOI: 10.1186/s13568-021-01231-7
    Yao C, Hu X, Wang X (2021). Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum.
  • DOI: 10.1007/s00253-021-11384-x
    Chang Y, Wang Q, Su T, Qi Q (2021). Identification of phage recombinase function unit in genus Corynebacterium.
  • DOI: 10.1016/j.meteno.2015.07.001
    Sawada K, Wada M, Hagiwara T, Zen-In S, Imai K, Yokota A (2015). Effect of pyruvate kinase gene deletion on the physiology of Corynebacterium glutamicum ATCC13032 under biotin-sufficient non-glutamate-producing conditions: Enhanced biomass production.
  • DOI: 10.1016/j.pep.2021.105928
    Liu X, Meng L, Wang X, Yang Y, Bai Z (2021). Effect of Clp protease from Corynebacterium glutamicum on heterologous protein expression.
  • DOI: 10.1016/j.biortech.2021.125666
    Kiefer D, Merkel M, Lilge L, Hausmann R, Henkel M (2021). High cell density cultivation of Corynebacterium glutamicum on bio-based lignocellulosic acetate using pH-coupled online feeding control.
  • DOI: 10.1007/s13205-021-02959-6
    Yang P, Chen Y, Gong AD (2021). Development of a defined medium for Corynebacterium glutamicum using urea as nitrogen source.
  • DOI: 10.3389/fmicb.2021.750206
    Feierabend M, Renz A, Zelle E, Noh K, Wiechert W, Drager A (2021). High-Quality Genome-Scale Reconstruction of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.3389/fbioe.2022.816628
    Zhang H, Ouyang Z, Zhao N, Han S, Zheng S (2022). Transcriptional Regulation of the Creatine Utilization Genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a Central Nitrogen Regulator.
  • DOI: 10.1016/j.biortech.2022.126994
    Merkel M, Kiefer D, Schmollack M, Blombach B, Lilge L, Henkel M, Hausmann R (2022). Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control.
  • DOI: 10.1186/s43141-022-00332-5
    Amrutha M, Nampoothiri KM (2022). In silico analysis of nitrilase-3 protein from Corynebacterium glutamicum for bioremediation of nitrile herbicides.
  • DOI: 10.1186/s12934-022-01806-4
    Niesser J, Muller MF, Kappelmann J, Wiechert W, Noack S (2022). Hot isopropanol quenching procedure for automated microtiter plate scale (13)C-labeling experiments.
  • DOI: 10.1002/cbic.202200238
    Dennis JA, Sadler JC, Wallace S (2022). Tyramine Derivatives Catalyze the Aldol Dimerization of Butyraldehyde in the Presence of Escherichia coli.
  • DOI: 10.3390/biology11060846
    Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T (2022). Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032.
  • DOI: 10.1093/femsle/fnac080
    Aliyath S, Nampoothiri KM (2022). The implication of Sortase E in the morphology and physiology of Corynebacterium glutamicum.
  • DOI: 10.1126/sciadv.abq2157
    Liu Y, Wang R, Liu J, Lu H, Li H, Wang Y, Ni X, Li J, Guo Y, Ma H, Liao X, Wang M (2022). Base editor enables rational genome-scale functional screening for enhanced industrial phenotypes in Corynebacterium glutamicum.
  • DOI: 10.1186/s13068-022-02238-3
    Schmollack M, Werner F, Huber J, Kiefer D, Merkel M, Hausmann R, Siebert D, Blombach B (2022). Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production.
  • DOI: 10.2903/j.efsa.2022.7647
    Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhauser-Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernandez E, Knutsen HK (2022). Safety of 2'-fucosyllactose (2'-FL) produced by a derivative strain (APC199) of Corynebacterium glutamicumATCC 13032 as a novel food pursuant to Regulation (EU) 2015/2283.
  • DOI: 10.1002/bit.28345
    Steinhoff H, Finger M, Osthege M, Golze C, Schito S, Noack S, Buchs J, Grunberger A (2023). Experimental k(S) estimation: A comparison of methods for Corynebacterium glutamicum from lab to microfluidic scale.
  • DOI: 10.1016/j.jbiosc.2023.03.011
    Hanh DD, Elkasaby T, Kawaguchi H, Tsuge Y, Ogino C, Kondo A (2023). Enhanced production of itaconic acid from enzymatic hydrolysate of lignocellulosic biomass by recombinant Corynebacteriumglutamicum.
  • DOI: 10.1016/j.scitotenv.2023.164577
    Luo N, Wang M, Nie Y, Wu XL (2023). Volatile compounds-induced environmental pH shifts mediate interspecific bacterial interactions over long-distance.
  • DOI: 10.1016/j.jbiosc.2023.05.006
    Elkasaby T, Hanh DD, Kawaguchi H, Kondo A, Ogino C (2023). Effect of different metabolic pathways on itaconic acid production in engineered Corynebacterium glutamicum.
  • DOI: 10.1002/biot.202200554
    Merkel M, Noll P, Lilge L, Hausmann R, Henkel M (2023). Design and evaluation of a 3D-printed, lab-scale perfusion bioreactor for novel biotechnological applications.
  • DOI: 10.4014/jmb.2305.05002
    Yu H, Hong J, Seok J, Seu YB, Kim IK, Kim KJ (2023). Crystal Structures of 6-Phosphogluconate Dehydrogenase from Corynebacterium glutamicum.
  • DOI: 10.1186/s12934-023-02180-5
    Halle L, Hollmann N, Tenhaef N, Mbengi L, Glitz C, Wiechert W, Polen T, Baumgart M, Bott M, Noack S (2023). Robotic workflows for automated long-term adaptive laboratory evolution: improving ethanol utilization by Corynebacterium glutamicum.
  • DOI: 10.1016/j.enzmictec.2023.110345
    Elkasaby T, Hanh DD, Kahar P, Kawaguchi H, Sazuka T, Kondo A, Ogino C (2023). Utilization of sweet sorghum juice as a carbon source for enhancement of itaconic acid production in engineered Corynebacterium glutamicum.
  • DOI: 10.1021/acs.jafc.3c06176
    Son HF, Yu H, Hong J, Lee D, Kim IK, Kim KJ (2023). Structure-Guided Protein Engineering of Glyceraldehyde-3-phosphate Dehydrogenase from Corynebacterium glutamicum for Dual NAD/NADP Cofactor Specificity.
  • DOI: 10.1007/s11274-023-03822-x
    Egbune EO, Ezedom T, Odeghe OB, Orororo OC, Egbune OU, Ehwarieme AD, Aganbi E, Ebuloku CS, Chukwuegbo AO, Bogard E, Ayomanor E, Chisom PA, Edafetano FL, Destiny A, Alebe PA, Aruwei TK, Anigboro AA, Tonukari NJ (2023). Solid-state fermentation production of L-lysine by Corynebacterium glutamicum (ATCC 13032) using agricultural by-products as substrate.
  • DOI: 10.3389/fbioe.2023.1296880
    Yang L, Li J, Zhang Y, Chen L, Ouyang Z, Liao D, Zhao F, Han S (2023). Characterization of the enzyme kinetics of EMP and HMP pathway in Corynebacterium glutamicum: reference for modeling metabolic networks.
  • DOI: 10.1111/1751-7915.14400
    Benninghaus L, Schwardmann LS, Jilg T, Wendisch VF (2024). Establishment of synthetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: Design, construction, and application to production of gamma-glutamylisopropylamide and l-theanine.
  • DOI: 10.1016/j.synbio.2024.01.003
    Li C, Sun P, Wei G, Zhu Y, Li J, Liu Y, Chen J, Deng Y (2024). Efficient biosynthesis of creatine by whole-cell catalysis from guanidinoacetic acid in Corynebacterium glutamicum.
  • DOI: 10.1007/s10529-024-03468-1
    Zhou W, Cui Y, Chen M, Gao Q, Bao K, Wang Y, Zhang M (2024). Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a beta-glucuronidase from Staphylococcus sp. RLH1.
  • DOI: 10.3389/fbioe.2024.1348184
    Balasubramanian S, Kohler JB, Jers C, Jensen PR, Mijakovic I (2024). Exploring the secretome of Corynebacterium glutamicum ATCC 13032.
  • DOI: 10.1186/s13068-024-02540-2
    Zhang B, Gou K, Xu K, Li Z, Guo X, Wu X (2024). De novo biosynthesis of beta-arbutin in Corynebacterium glutamicum via pathway engineering and process optimization.
  • DOI: 10.1093/jimb/kuae024
    Velasquez-Guzman JC, Huttanus HM, Morales DP, Werner TS, Carroll AL, Guss AM, Yeager CM, Dale T, Jha RK (2024). Biosensors for the detection of chorismate and cis,cis-muconic acid in Corynebacterium glutamicum.
  • DOI: 10.1093/jimb/kuae026
    Srinivasan A, Chen-Xiao K, Banerjee D, Oka A, Pidatala VR, Eudes A, Simmons BA, Eng T, Mukhopadhyay A (2024). Sustainable production of 2,3,5,6-tetramethylpyrazine at high titer in engineered Corynebacterium glutamicum.
  • DOI: 10.2323/jgam.45.169
    Araki K, Takakura H, Miyajima Y, Akashi Y, Kawanishi K, Kakita S, Kondo Y (1999). Accumulation of anthranilic acid and N-glucosylanthranilic acid by a Corynebacterium glutamicum mutant resistant to DL-serine hydroxamate.
  • DOI: 10.1099/ijsem.0.002717
    Sakurai K, Kawasaki H (2018). Genetic variation during long-term preservation of bacteria in public culture collections.
  • DOI: 10.1099/00221287-140-10-2849
    Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH (1994). In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:30412
Local history
  • Registered 12 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license