Strain sc|0032727


Strain numbers

ATCC 824 = BCRC 10639 = CCRC 10639 = CCUG 42182 = CCUG 42182 C = CECT 508 = DSM 792 = IFO 13948 = JCM 1419 = KCTC 1790 = LMG 5710 = McCoy and McClung strain W = NBRC 13948 = NCCB 29024 = NCCB 84048 = NCIMB 13357 = NRRL B-527 = VKM B-1787

StrainInfo: SI-ID 92208 T

Taxon
Clostridium acetobutylicum
Sample
Corn meal (US)
Cultures (34)
LMG 5710 = ATCC 824 = CECT 508 = IAM 19013 = IFO 13948 = NCIB 8052 = ATCC 51743 = VKM B-1787 = JCM 1419 = CCRC 10639 = KCTC 1790 = NCIMB 13357 = IFO 3346 = VTT E-77022 = LMD 29.24 = LMD 84.48 = KCTC 1788 = NRRL B-527 = CCUG42182 = NBRC 13948 = NCCB 29024 = NCCB 84048 = BCRC 10639 = CCT 0485 = VKM B-1789 = NCIM 2337 = CDBB 797 = NCIMB 8052 = NRRL B-23491 = CCUG 42182 C = CGMCC 1.0070 = CGMCC 1.0244 = VTT E-00022 = DSM 792
Other Designations (17)
McCoy and McClung strain W = McClung 2291 = GSRICI1208 = LMG 5710 t2T QC 10/98 = LMG 5710T QC 5/96 = LMG 5710 t1T QC 10/98 = LMG 5710 t1 = LMG 5710 t2 = LMG 5710QC10/98 = IMAB 8-3 = LMG 5710 batch 04/09 = CCTM La 3341 = McCoy and McClungW = YSM 1419 = DSMZ 792 = L.S. McClung 2291 = 2291
Sequences (29)
Associated Publications (375)
  • DOI: 10.1128/aem.56.12.3634-3642.1990
    Croux C, Paquet V, Goma G, Soucaille P (1990). Purification and characterization of acidolysin, an acidic metalloprotease produced by Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1038/nbt0292-190
    Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992). Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/jb.178.11.3015-3024.1996
    Boynton ZL, Bennet GN, Rudolph FB (1996). Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.62.8.2758-2766.1996
    Boynton ZL, Bennett GN, Rudolph FB (1996). Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s002530000374
    Lopez-Contreras AM, Claassen PA, Mooibroek H, De Vos WM (2000). Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol.
  • DOI: 10.1128/aem.50.4.1068-1076.1985
    Lee SF, Forsberg CW, Gibbins LN (1985). Xylanolytic Activity of Clostridium acetobutylicum.
  • DOI: 10.1128/jb.179.23.7426-7434.1997
    Cornillot E, Croux C, Soucaille P (1997). Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome.
  • DOI: 10.1128/AEM.65.11.4973-4980.1999
    Toth J, Ismaiel AA, Chen JS (1999). The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum.
  • DOI: 10.1016/s0168-1656(00)00218-2
    Montoya D, Spitia S, Silva E, Schwarz WH (2000). Isolation of mesophilic solvent-producing clostridia from Colombian sources: physiological characterization, solvent production and polysaccharide hydrolysis.
  • DOI: 10.1128/AEM.01140-07
    Hanai T, Atsumi S, Liao JC (2007). Engineered synthetic pathway for isopropanol production in Escherichia coli.
  • DOI: 10.1128/AEM.01948-08
    Shi Z, Blaschek HP (2008). Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
  • DOI: 10.1128/AEM.01616-10
    Siemerink MA, Kuit W, Lopez Contreras AM, Eggink G, van der Oost J, Kengen SW (2011). D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum.
  • DOI: 10.1186/2191-0855-2-45
    Collas F, Kuit W, Clement B, Marchal R, Lopez-Contreras AM, Monot F (2012). Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains.
  • DOI: 10.1007/s00253-013-4964-0
    Tamakawa H, Mita T, Yokoyama A, Ikushima S, Yoshida S (2013). Metabolic engineering of Candida utilis for isopropanol production.
  • DOI: 10.1016/j.ymben.2013.09.007
    Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013). Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.
  • DOI: 10.1016/j.biortech.2014.10.148
    Liu K, Atiyeh HK, Pardo-Planas O, Ramachandriya KD, Wilkins MR, Ezeji TC, Ujor V, Tanner RS (2014). Process development for biological production of butanol from Eastern redcedar.
  • DOI: 10.1016/j.anaerobe.2014.12.008
    Abd-Alla MH, Zohri AA, El-Enany AE, Ali SM (2014). Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.
  • DOI: 10.1007/s00253-015-6566-5
    Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang IC, Yang ST (2015). Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
  • DOI: 10.1002/biot.201600053
    Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, Gu Y, Jiang W, Jiang Y, Yang S (2016). CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii.
  • DOI: 10.1016/j.anaerobe.2017.08.011
    Abd-Alla MH, Zohri AA, El-Enany AE, Ali SM (2017). Conversion of food processing wastes to biofuel using clostridia.
  • DOI: 10.1002/bit.27333
    Wen Z, Ledesma-Amaro R, Lu M, Jiang Y, Gao S, Jin M, Yang S (2020). Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community.
  • DOI: 10.1007/s10295-020-02303-6
    Han S, Kim Y, Karanjikar M, San KY, Bennett GN (2020). Genetic sensor-regulators functional in Clostridia.
  • DOI: 10.1016/0378-1119(91)90460-s
    Croux C, Garcia JL (1991). Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC824: comparison with other lytic enzymes.
  • DOI: 10.1016/0378-1119(94)00838-j
    Stim-Herndon KP, Petersen DJ, Bennett GN (1995). Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/0378-1119(94)00818-d
    Wong J, Sass C, Bennett GN (1995). Sequence and arrangement of genes encoding sigma factors in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/0014-5793(93)81621-6
    Croux C, Ronda C, Lopez R, Garcia JL (1993). Role of the C-terminal domain of the lysozyme of Clostridium acetobutylicum ATCC 824 in a chimeric pneumococcal-clostridial cell wall lytic enzyme.
  • DOI: 10.1111/j.1365-2958.1993.tb01231.x
    Croux C, Ronda C, Lopez R, Garcia JL (1993). Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme.
  • DOI: 10.1128/aem.59.4.1077-1081.1993
    Mermelstein LD, Papoutsakis ET (1993). In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.57.1.212-218.1991
    Paquet V, Croux C, Goma G, Soucaille P (1991). Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1038/sj.jim.7000179
    Wardwell SA, Yang YT, Chang HY, San KY, Rudolph FB, Bennett GN (2001). Expression of the Klebsiella pneumoniae CG21 acetoin reductase gene in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1159/000073403
    Tangney M, Galinier A, Deutscher J, Mitchell WJ (2003). Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/JB.186.1.253-257.2004
    Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A (2004). Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1093/nar/gkh509
    Paredes CJ, Rigoutsos I, Papoutsakis ET (2004). Transcriptional organization of the Clostridium acetobutylicum genome.
  • DOI: 10.1128/AEM.71.4.1987-1995.2005
    Scotcher MC, Rudolph FB, Bennett GN (2005). Expression of abrB310 and SinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/j.bbamcr.2005.04.006
    Desvaux M, Khan A, Scott-Tucker A, Chaudhuri RR, Pallen MJ, Henderson IR (2005). Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s00253-006-0679-9
    Tangney M, Mitchell WJ (2006). Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/JB.00088-11
    Jones SW, Tracy BP, Gaida SM, Papoutsakis ET (2011). Inactivation of sigmaF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes sigmaE and sigmaG protein expression but does not block solvent formation.
  • DOI: 10.1128/JB.05474-11
    Bi C, Jones SW, Hess DR, Tracy BP, Papoutsakis ET (2011). SpoIIE is necessary for asymmetric division, sporulation, and expression of sigmaF, sigmaE, and sigmaG but does not control solvent production in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1186/1754-6834-6-117
    Kovacs K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP (2013). Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1186/s12896-014-0103-y
    Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014). Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
  • DOI: 10.1107/S2053230X15012121
    Germane KL, Servinsky MD, Gerlach ES, Sund CJ, Hurley MM (2015). Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105.
  • DOI: 10.1186/s13068-016-0432-2
    Croux C, Nguyen NP, Lee J, Raynaud C, Saint-Prix F, Gonzalez-Pajuelo M, Meynial-Salles I, Soucaille P (2016). Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum.
  • DOI: 10.1016/j.biortech.2021.126093
    Mondal S, Santra S, Rakshit S, Kumar Halder S, Hossain M, Chandra Mondal K (2021). Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum.
  • DOI: 10.1016/0378-1097(92)90730-c
    Croux C, Garcia JL (1992). Reconstruction and expression of the autolytic gene from Clostridium acetobutylicum ATCC 824 in Escherichia coli.
  • DOI: 10.1128/jb.174.22.7149-7158.1992
    Walter KA, Bennett GN, Papoutsakis ET (1992). Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes.
  • DOI: 10.1111/j.1749-6632.1992.tb42572.x
    Lee SY, Mermelstein LD, Bennett GN, Papoutsakis ET (1992). Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.58.4.1075-1081.1992
    Croux C, Canard B, Goma G, Soucaille P (1992). Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan.
  • DOI: 10.1099/00221287-138-5-861
    Croux C, Canard B, Goma G, Soucaille P (1992). Autolysis of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.57.9.2735-2741.1991
    Petersen DJ, Bennett GN (1991). Cloning of the Clostridium acetobutylicum ATCC 824 acetyl coenzyme A acetyltransferase (thiolase; EC 2.3.1.9) gene.
  • DOI: 10.1128/aem.56.8.2559-2561.1990
    Annous BA, Blaschek HP (1990). Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.57.9.2544-2548.1991
    Annous BA, Blaschek HP (1991). Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity.
  • DOI: 10.1128/jb.173.5.1831-1834.1991
    Petersen DJ, Welch RW, Rudolph FB, Bennett GN (1991). Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.56.11.3491-3498.1990
    Petersen DJ, Bennett GN (1990). Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli.
  • DOI: 10.1128/aem.56.6.1576-1583.1990
    Cary JW, Petersen DJ, Papoutsakis ET, Bennett GN (1990). Cloning and expression of Clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli.
  • DOI: 10.1139/o89-110
    Janati-Idrissi R, Junelles AM, el Kanouni A, Petitdemange H, Gay R (1989). Pyruvate fermentation by Clostridium acetobutylicum.
  • DOI: 10.1111/j.1574-6968.1989.tb03097.x
    Verhasselt P, Poncelet F, Vits K, Van Gool A, Vanderleyden J (1989). Cloning and expression of a Clostridium acetobutylicum alpha-amylase gene in Escherichia coli.
  • DOI: 10.1016/0003-9861(89)90489-x
    Welch RW, Rudolph FB, Papoutsakis ET (1989). Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824).
  • DOI: 10.1128/aem.55.2.317-322.1989
    Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989). Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis.
  • DOI: 10.1128/aem.55.2.323-329.1989
    Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989). Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids.
  • Marczak R, Petitdemange H, Alimi F, Ballongue J, Gay R (1983). [Effect of growth phase and composition of the medium on the rate of biosynthesis of NADH: rubredoxin oxidoreductase in Clostridium acetobutylicum].
  • DOI: 10.1128/aem.47.1.193-194.1984
    Vollherbst-Schneck K, Sands JA, Montenecourt BS (1984). Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1111/j.1574-6976.1995.tb00210.x
    Chen JS (1995). Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia.
  • DOI: 10.1007/BF01569758
    Mattsson DM, Rogers P (1994). Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation.
  • DOI: 10.1111/j.1574-6968.1994.tb07308.x
    Cotta MA, Wheeler MB, Whitehead TR (1994). Cyclic AMP in ruminal and other anaerobic bacteria.
  • DOI: 10.1128/jb.176.18.5843-5846.1994
    Nair RV, Papoutsakis ET (1994). Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production.
  • DOI: 10.1128/aem.60.1.337-340.1994
    Kim AY, Attwood GT, Holt SM, White BA, Blaschek HP (1994). Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene.
  • DOI: 10.1016/0378-1119(93)90182-3
    Walter KA, Nair RV, Cary JW, Bennett GN, Papoutsakis ET (1993). Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/jb.176.3.871-885.1994
    Nair RV, Bennett GN, Papoutsakis ET (1994). Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/0378-1119(93)90545-e
    Petersen DJ, Cary JW, Vanderleyden J, Bennett GN (1993). Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicum ATCC824.
  • DOI: 10.1128/jb.175.12.3838-3843.1993
    Kim AY, Blaschek HP (1993). Construction and characterization of a phage-plasmid hybrid (phagemid), pCAK1, containing the replicative form of viruslike particle CAK1 isolated from Clostridium acetobutylicum NCIB 6444.
  • DOI: 10.1111/j.1574-6968.1993.tb06122.x
    Lee SY, Mermelstein LD, Papoutsakis ET (1993). Determination of plasmid copy number and stability in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/jb.178.9.2668-2675.1996
    Gorwa MF, Croux C, Soucaille P (1996). Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s002849900062
    Wong J, Bennett GN (1996). Recombination-induced variants of Clostridium acetobutylicum ATCC 824 with increased solvent production.
  • DOI: 10.1007/BF02941702
    Green EM, Bennett GN (1996). Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1099/13500872-142-8-2079
    Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996). Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/jb.179.17.5442-5447.1997
    Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1997). The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain.
  • DOI: 10.1128/AEM.64.3.1079-1085.1998
    Bermejo LL, Welker NE, Papoutsakis ET (1998). Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification.
  • DOI: 10.1007/s002849900304
    Belouski E, Gui L, Rudolph FB, Bennett GN (1998). Complementation of an Escherichia coli polypeptide deformylase mutant with a gene from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s002849900330
    Belouski E, Watson DE, Bennett GN (1998). Cloning, sequence, and expression of the phosphofructokinase gene of Clostridium acetobutylicum ATCC 824 in Escherichia coli.
  • DOI: 10.1128/JB.181.1.319-330.1999
    Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET (1999). Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor.
  • DOI: 10.1128/AEM.65.3.936-945.1999
    Desai RP, Papoutsakis ET (1999). Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum.
  • DOI: 10.1002/(sici)1097-0290(19980420)58:2/3<215::aid-bit14>3.0.co;2-b
    Green EM, Bennett GN (1998). Genetic manipulation of acid and solvent formation in clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/AEM.65.7.3244-3247.1999
    Huang K, Rudolph FB, Bennett GN (1999). Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol.
  • DOI: 10.1128/AEM.65.9.3793-3799.1999
    Tummala SB, Welker NE, Papoutsakis ET (1999). Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1046/j.1365-2672.2000.00032.x
    Tyurin M, Padda R, Huang KX, Wardwell S, Caprette D, Bennett GN (2000). Electrotransformation of Clostridium acetobutylicum ATCC 824 using high-voltage radio frequency modulated square pulses.
  • Huang KX, Huang S, Rudolph FB, Bennett GN (2000). Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824.
  • Tangney M, Mitchell WJ (2000). Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824.
  • Winzer K, Lorenz K, Zickner B, Durre P (2000). Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792.
  • DOI: 10.1038/sj.jim.7000125
    Tangney M, Winters GT, Mitchell WJ (2001). Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/JB.184.3.821-830.2002
    Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002). Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1111/j.1574-6968.2002.tb11165.x
    Sabathe F, Croux C, Cornillot E, Soucaille P (2002). amyP, a reporter gene to study strain degeneration in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/JB.184.13.3586-3597.2002
    Harris LM, Welker NE, Papoutsakis ET (2002). Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1111/j.1574-6968.2002.tb11450.x
    Sabathe F, Belaich A, Soucaille P (2002). Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum.
  • DOI: 10.1128/AEM.69.2.869-877.2003
    Lopez-Contreras AM, Martens AA, Szijarto N, Mooibroek H, Claassen PA, van der Oost J, de Vos WM (2003). Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9.
  • DOI: 10.1128/JB.185.6.1923-1934.2003
    Tummala SB, Welker NE, Papoutsakis ET (2003). Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum.
  • DOI: 10.1016/s0045-6535(02)00639-2
    Zhang C, Hughes JB (2003). Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract.
  • DOI: 10.1128/AEM.69.5.2831-2841.2003
    Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/JB.185.12.3644-3653.2003
    Tummala SB, Junne SG, Papoutsakis ET (2003). Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations.
  • DOI: 10.1128/AEM.69.8.4951-4965.2003
    Tomas CA, Welker NE, Papoutsakis ET (2003). Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program.
  • DOI: 10.1128/AEM.69.8.4985-4988.2003
    Girbal L, Mortier-Barriere I, Raynaud F, Rouanet C, Croux C, Soucaille P (2003). Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum.
  • DOI: 10.1074/jbc.M310733200
    Thompson J, Hess S, Pikis A (2003). Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-alpha-glucosidase(s).
  • DOI: 10.1007/s10295-004-0143-8
    Ali MK, Rudolph FB, Bennett GN (2004). Thermostable xylanase10B from Clostridium acetobutylicum ATCC824.
  • DOI: 10.1016/j.febslet.2004.06.047
    Kawasaki S, Ishikura J, Watamura Y, Niimura Y (2004). Identification of O2-induced peptides in an obligatory anaerobe, Clostridium acetobutylicum.
  • DOI: 10.1128/AEM.70.9.5238-5243.2004
    Lopez-Contreras AM, Gabor K, Martens AA, Renckens BA, Claassen PA, Van Der Oost J, De Vos WM (2004). Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum.
  • DOI: 10.1128/JB.187.6.1930-1936.2005
    Scotcher MC, Bennett GN (2005). SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/AEM.71.3.1215-1222.2005
    Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP (2005). Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s10295-004-0192-z
    Ali MK, Rudolph FB, Bennett GN (2005). Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/AEM.71.5.2777-2781.2005
    Girbal L, von Abendroth G, Winkler M, Benton PM, Meynial-Salles I, Croux C, Peters JW, Happe T, Soucaille P (2005). Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities.
  • DOI: 10.1007/s00203-005-0036-x
    Kutty R, Bennett GN (2005). Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s10295-005-0050-7
    Sullivan L, Bennett GN (2005). Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants.
  • DOI: 10.1128/aem.44.6.1318-1324.1982
    Monot F, Martin JR, Petitdemange H, Gay R (1982). Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium.
  • DOI: 10.1128/aem.48.6.1166-1170.1984
    Holt RA, Stephens GM, Morris JG (1984). Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH.
  • DOI: 10.1128/aem.50.2.220-228.1985
    Lee SF, Forsberg CW, Gibbins LN (1985). Cellulolytic Activity of Clostridium acetobutylicum.
  • DOI: 10.1128/aem.51.6.1230-1234.1986
    Huang L, Forsberg CW, Gibbins LN (1986). Influence of External pH and Fermentation Products on Clostridium acetobutylicum Intracellular pH and Cellular Distribution of Fermentation Products.
  • DOI: 10.1128/aem.53.4.644-650.1987
    Lee SF, Forsberg CW, Rattray JB (1987). Purification and Characterization of Two Endoxylanases from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.53.4.651-654.1987
    Lee SF, Forsberg CW (1987). Isolation and Some Properties of a beta-d-Xylosidase from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/aem.53.12.2854-2861.1987
    Baer SH, Blaschek HP, Smith TL (1987). Effect of Butanol Challenge and Temperature on Lipid Composition and Membrane Fluidity of Butanol-Tolerant Clostridium acetobutylicum.
  • DOI: 10.1128/aem.54.11.2717-2722.1988
    Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988). Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents.
  • DOI: 10.1128/aem.55.4.970-976.1989
    Clark SW, Bennett GN, Rudolph FB (1989). Isolation and Characterization of Mutants of Clostridium acetobutylicum ATCC 824 Deficient in Acetoacetyl-Coenzyme A:Acetate/Butyrate:Coenzyme A-Transferase (EC 2.8.3.9) and in Other Solvent Pathway Enzymes.
  • DOI: 10.1128/aem.55.10.2729-2731.1989
    Baer SH, Bryant DL, Blaschek HP (1989). Electron Spin Resonance Analysis of the Effect of Butanol on the Membrane Fluidity of Intact Cells of Clostridium acetobutylicum.
  • DOI: 10.1128/aem.60.1.39-44.1994
    Boynton ZL, Bennett GN, Rudolph FB (1994). Intracellular Concentrations of Coenzyme A and Its Derivatives from Clostridium acetobutylicum ATCC 824 and Their Roles in Enzyme Regulation.
  • DOI: 10.1016/j.watres.2005.11.041
    Zhang H, Bruns MA, Logan BE (2006). Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
  • DOI: 10.1007/s10295-005-0067-y
    Kutty R, Bennett GN (2006). Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum.
  • DOI: 10.1128/JB.00491-06
    Fischer RJ, Oehmcke S, Meyer U, Mix M, Schwarz K, Fiedler T, Bahl H (2006). Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH.
  • DOI: 10.1007/s00203-006-0184-7
    Kutty R, Bennett GN (2006). Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/j.mimet.2006.09.018
    Schwarz K, Fiedler T, Fischer RJ, Bahl H (2006). A Standard Operating Procedure (SOP) for the preparation of intra- and extracellular proteins of Clostridium acetobutylicum for proteome analysis.
  • DOI: 10.1128/AEM.02082-06
    Yu Y, Tangney M, Aass HC, Mitchell WJ (2007). Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1128/AEM.02296-06
    Borden JR, Papoutsakis ET (2007). Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum.
  • DOI: 10.1128/AEM.00144-07
    Paredes CJ, Senger RS, Spath IS, Borden JR, Sillers R, Papoutsakis ET (2007). A general framework for designing and validating oligomer-based DNA microarrays and its application to Clostridium acetobutylicum.
  • DOI: 10.1007/s00253-007-1246-8
    Jojima T, Inui M, Yukawa H (2007). Production of isopropanol by metabolically engineered Escherichia coli.
  • DOI: 10.1007/s00253-007-1257-5
    Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2007). Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
  • Berezina OV, Sineokii SP, Velikodvorskaia GA, Schwarz W, Zverlov VV (2008). [Extracellular glycosyl hydrolase activity of the clostridia producing acetone, butanol, and ethanol].
  • DOI: 10.1002/bit.260280908
    Yerushalmi L, Volesky B, Votruba J (1986). Systems analysis of the culture physiology in acetone-butanol fermentation.
  • DOI: 10.1002/bit.260340104
    Park CH, Okos MR, Wankat PC (1989). Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
  • DOI: 10.1002/bit.260340612
    Reardon KF, Bailey JE (1989). Effects of pH and added metabolites on bioconversions by immobilized non-growing Clostridium acetobutylicum.
  • DOI: 10.1002/bit.260420906
    Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN (1993). Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon.
  • DOI: 10.1128/JB.00574-08
    Fiedler T, Mix M, Meyer U, Mikkat S, Glocker MO, Bahl H, Fischer RJ (2008). The two-component system PhoPR of Clostridium acetobutylicum is involved in phosphate-dependent gene regulation.
  • DOI: 10.1007/s00253-008-1654-4
    Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008). Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
  • DOI: 10.1002/bit.22009
    Senger RS, Papoutsakis ET (2008). Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems.
  • DOI: 10.1002/bit.22010
    Senger RS, Papoutsakis ET (2008). Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis.
  • DOI: 10.1002/bit.22109
    Nielsen DR, Prather KJ (2009). In situ product recovery of n-butanol using polymeric resins.
  • DOI: 10.1016/j.jbiotec.2009.08.009
    Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y, Yang S, Jiang W (2009). Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
  • DOI: 10.1007/s12010-009-8788-4
    Lee SM, Cho MO, Um Y, Sang BI (2009). Development of real-time PCR primer and probe sets for detecting degenerated and non-degenerated forms of the butanol-producing bacterium Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1002/biot.200900142
    Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY (2009). Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production.
  • DOI: 10.1128/AEM.02026-09
    Warner CD, Hoy JA, Shilling TC, Linnen MJ, Ginder ND, Ford CF, Honzatko RB, Reilly PJ (2009). Tertiary structure and characterization of a glycoside hydrolase family 44 endoglucanase from Clostridium acetobutylicum.
  • DOI: 10.1016/j.ymben.2009.12.004
    Borden JR, Jones SW, Indurthi D, Chen Y, Papoutsakis ET (2010). A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing.
  • DOI: 10.1016/j.ymben.2010.05.002
    Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010). Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum.
  • DOI: 10.1007/s10295-010-0875-6
    Cai X, Bennett GN (2010). Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin.
  • DOI: 10.1186/1471-2164-12-93
    Hu S, Zheng H, Gu Y, Zhao J, Zhang W, Yang Y, Wang S, Zhao G, Yang S, Jiang W (2011). Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018.
  • DOI: 10.1002/biot.201000282
    Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR (2010). Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: Isotopomer analysis, in vitro activities and expression analysis.
  • DOI: 10.1128/AEM.03012-10
    Mingardon F, Chanal A, Tardif C, Fierobe HP (2011). The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/j.ymben.2011.04.002
    Yu M, Zhang Y, Tang IC, Yang ST (2011). Metabolic engineering of Clostridium tyrobutyricum for n-butanol production.
  • DOI: 10.1128/JB.05596-11
    Bao G, Wang R, Zhu Y, Dong H, Mao S, Zhang Y, Chen Z, Li Y, Ma Y (2011). Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture.
  • DOI: 10.1016/j.nbt.2011.09.001
    Zhang Y, Han B, Ezeji TC (2011). Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.
  • DOI: 10.1128/AEM.00644-11
    Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011). Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose.
  • DOI: 10.1186/1477-5956-9-66
    Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011). Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose.
  • DOI: 10.1186/1752-0509-5-172
    Hendrix W, Rocha AM, Padmanabhan K, Choudhary A, Scott K, Mihelcic JR, Samatova NF (2011). DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules.
  • DOI: 10.1002/btpr.716
    Zhang X, Agrawal A, San KY (2011). Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase.
  • DOI: 10.1128/AEM.06376-11
    Steiner E, Scott J, Minton NP, Winzer K (2011). An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum.
  • DOI: 10.1002/biot.201100418
    Schmidt M, Weuster-Botz D (2012). Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum.
  • DOI: 10.1007/s00253-011-3852-8
    Lehmann D, Honicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lutke-Eversloh T (2012). Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.
  • DOI: 10.1016/j.biortech.2011.12.148
    Huesemann MH, Kuo LJ, Urquhart L, Gill GA, Roesijadi G (2012). Acetone-butanol fermentation of marine macroalgae.
  • DOI: 10.1007/s10295-012-1094-0
    Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2012). Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase.
  • DOI: 10.1016/j.biortech.2012.02.043
    Van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L, De Wever H (2012). Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes.
  • DOI: 10.1007/s12104-012-9381-2
    Cui Z, Li Y, Xiao Y, Feng Y, Cui Q (2012). Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824.
  • DOI: 10.1007/s00253-012-4112-2
    Wietzke M, Bahl H (2012). The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum.
  • DOI: 10.1186/1752-0509-6-42
    McAnulty MJ, Yen JY, Freedman BG, Senger RS (2012). Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico.
  • DOI: 10.1007/s00253-012-4156-3
    Bai X, Ji Z (2012). Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum.
  • DOI: 10.1007/s10295-012-1151-8
    Garza E, Zhao J, Wang Y, Wang J, Iverson A, Manow R, Finan C, Zhou S (2012). Engineering a homobutanol fermentation pathway in Escherichia coli EG03.
  • Zhang Y, Zhou P, Wang P, Xie J, Ye Q (2012). [Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli].
  • DOI: 10.1007/s00253-012-4253-3
    Cai X, Servinsky M, Kiel J, Sund C, Bennett GN (2012). Analysis of redox responses during TNT transformation by Clostridium acetobutylicum ATCC 824 and mutants exhibiting altered metabolism.
  • DOI: 10.1007/s10295-012-1186-x
    Servinsky MD, Germane KL, Liu S, Kiel JT, Clark AM, Shankar J, Sund CJ (2012). Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/j.ymben.2012.09.001
    Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012). Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.
  • DOI: 10.1016/j.biortech.2012.08.056
    Li X, Li Z, Zheng J, Shi Z, Li L (2012). Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate.
  • DOI: 10.1016/j.biortech.2012.08.085
    Chua TK, Liang DW, Qi C, Yang KL, He J (2012). Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes.
  • DOI: 10.1016/j.jbiosc.2012.09.017
    He Q, Chen H (2012). Improved efficiency of butanol production by absorbed lignocellulose fermentation.
  • DOI: 10.1002/bit.24758
    Mann MS, Lutke-Eversloh T (2012). Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum.
  • DOI: 10.1007/s12275-012-2373-1
    Choi SJ, Lee J, Jang YS, Park JH, Lee SY, Kim IH (2012). Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum.
  • DOI: 10.1016/j.ymeth.2013.03.013
    Hou S, Jones SW, Choe LH, Papoutsakis ET, Lee KH (2013). Workflow for quantitative proteomic analysis of Clostridium acetobutylicum ATCC 824 using iTRAQ tags.
  • DOI: 10.1016/j.ymben.2013.03.002
    Scheel M, Lutke-Eversloh T (2013). New options to engineer biofuel microbes: development and application of a high-throughput screening system.
  • DOI: 10.1016/j.ymben.2013.03.003
    Dusseaux S, Croux C, Soucaille P, Meynial-Salles I (2013). Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture.
  • DOI: 10.1007/s00253-013-5075-7
    Ventura JR, Hu H, Jahng D (2013). Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes.
  • DOI: 10.1007/s00449-013-1063-7
    Zhang Y, Hou T, Li B, Liu C, Mu X, Wang H (2013). Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment.
  • DOI: 10.1002/btpr.1841
    Wiehn M, Staggs K, Wang Y, Nielsen DR (2013). In situ butanol recovery from Clostridium acetobutylicum fermentations by expanded bed adsorption.
  • DOI: 10.1007/s11274-014-1619-y
    Wang L, Xia M, Zhang L, Chen H (2014). Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids.
  • DOI: 10.3109/02652048.2013.879928
    Rathore S, Heng PW, Chan LW (2014). Feasibility study on microencapsulation of anaerobic Clostridium acetobutylicum ATCC 824 by emulsification method for application in biobutanol production.
  • DOI: 10.1007/s00253-014-5738-z
    Jang YS, Han MJ, Lee J, Im JA, Lee YH, Papoutsakis ET, Bennett G, Lee SY (2014). Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains.
  • DOI: 10.1007/s00253-014-5809-1
    Voigt C, Bahl H, Fischer RJ (2014). Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
  • DOI: 10.1016/j.ymben.2014.07.003
    Bormann S, Baer ZC, Sreekumar S, Kuchenreuther JM, Dean Toste F, Blanch HW, Clark DS (2014). Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.
  • Hou T, Zhang Y, Chen X, Guan J, Mu X (2014). [Effect of non-ionic surfactants on butanol production with Clostridium acetobutylicum ATCC 824].
  • DOI: 10.1016/j.ymben.2014.08.002
    Au J, Choi J, Jones SW, Venkataramanan KP, Antoniewicz MR (2014). Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.
  • DOI: 10.1186/s13068-014-0144-4
    Dash S, Mueller TJ, Venkataramanan KP, Papoutsakis ET, Maranas CD (2014). Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model.
  • DOI: 10.3109/02652048.2015.1017617
    Rathore S, Wan Sia Heng P, Chan LW (2015). Microencapsulation of Clostridium acetobutylicum ATCC 824 spores in gellan gum microspheres for the production of biobutanol.
  • DOI: 10.4238/2015.March.20.1
    Zhao HL, Xia ZK, Hua ZG, Wei W (2015). Selectional versus mutational mechanism underlying genomic features of bacterial strand asymmetry: a case study in Clostridium acetobutylicum.
  • DOI: 10.1002/bit.25613
    Yu L, Xu M, Tang IC, Yang ST (2015). Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
  • DOI: 10.1007/s00253-015-6680-4
    Yu L, Xu M, Tang IC, Yang ST (2015). Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing alpha-glucosidase.
  • DOI: 10.1016/j.anaerobe.2015.05.007
    Hassan EA, Abd-Alla MH, Bagy MM, Morsy FM (2015). In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.
  • DOI: 10.1186/s13068-015-0266-3
    Wang Z, Cao G, Zheng J, Fu D, Song J, Zhang J, Zhao L, Yang Q (2015). Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.
  • DOI: 10.1073/pnas.1423143112
    Liao C, Seo SO, Celik V, Liu H, Kong W, Wang Y, Blaschek H, Jin YS, Lu T (2015). Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.
  • DOI: 10.1016/j.enzmictec.2015.06.011
    Tan Y, Liu ZY, Liu Z, Li FL (2015). Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528.
  • DOI: 10.3389/fmicb.2015.00950
    Liu Z, Qiao K, Tian L, Zhang Q, Liu ZY, Li FL (2015). Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores.
  • DOI: 10.1016/j.enzmictec.2015.08.002
    Hassan SH, Morsy FM (2015). Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.
  • DOI: 10.1007/s00449-015-1513-5
    Gallardo R, Acevedo A, Quintero J, Paredes I, Conejeros R, Aroca G (2015). In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply.
  • DOI: 10.1186/s13068-015-0409-6
    Xia ML, Wang L, Yang ZX, Chen HZ (2015). Periodic-peristole agitation for process enhancement of butanol fermentation.
  • DOI: 10.1186/s13068-015-0410-0
    Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT, Winzer K, Minton NP (2016). Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1002/biot.201500144
    Freedman BG, Zu TN, Wallace RS, Senger RS (2016). Raman spectroscopy detects phenotypic differences among Escherichia coli enriched for 1-butanol tolerance using a metagenomic DNA library.
  • DOI: 10.1093/femsle/fnw065
    Zhang Y, Xu S, Chai C, Yang S, Jiang W, Minton NP, Gu Y (2016). Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum.
  • DOI: 10.1016/j.jbiosc.2016.04.009
    Li J, Wang L, Chen H (2016). Periodic peristalsis increasing acetone-butanol-ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw.
  • DOI: 10.1186/s13068-016-0526-x
    Willson BJ, Kovacs K, Wilding-Steele T, Markus R, Winzer K, Minton NP (2016). Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1080/09593330.2016.1173114
    Dams RI, Guilherme AA, Vale MS, Nunes VF, Leitao RC, Santaella ST (2016). Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures.
  • DOI: 10.1186/s13068-016-0523-0
    Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC (2016). Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1038/srep28307
    Zhao X, Condruz S, Chen J, Jolicoeur M (2016). A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation.
  • DOI: 10.1002/biot.201600457
    Cho C, Choe D, Jang YS, Kim KJ, Kim WJ, Cho BK, Papoutsakis ET, Bennett GN, Seung DY, Lee SY (2017). Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.
  • DOI: 10.1016/j.jphotobiol.2017.02.011
    Morsy FM (2017). Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.
  • DOI: 10.1016/j.jbiotec.2017.04.031
    Liao Z, Zhang Y, Luo S, Suo Y, Zhang S, Wang J (2017). Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium.
  • DOI: 10.1016/j.mimet.2017.06.010
    Wasels F, Jean-Marie J, Collas F, Lopez-Contreras AM, Lopes Ferreira N (2017). A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
  • DOI: 10.1186/s13068-017-0864-3
    Doud DFR, Holmes EC, Richter H, Molitor B, Jander G, Angenent LT (2017). Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol.
  • DOI: 10.1002/bit.26393
    Zhao X, Kasbi M, Chen J, Peres S, Jolicoeur M (2017). A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.
  • DOI: 10.1016/j.jbiotec.2017.10.010
    Xu M, Zhao J, Yu L, Yang ST (2017). Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production.
  • DOI: 10.1186/s13568-018-0615-2
    Buendia-Kandia F, Rondags E, Framboisier X, Mauviel G, Dufour A, Guedon E (2018). Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose.
  • DOI: 10.1007/s00253-018-9208-x
    Liao Z, Suo Y, Xue C, Fu H, Wang J (2018). Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway.
  • DOI: 10.1007/s00253-018-9267-z
    Noh HJ, Woo JE, Lee SY, Jang YS (2018). Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate.
  • DOI: 10.3390/molecules23081944
    Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S (2018). Optimisation of Simultaneous Saccharification and Fermentation (SSF) for Biobutanol Production Using Pretreated Oil Palm Empty Fruit Bunch.
  • DOI: 10.1128/mSystems.00064-18
    Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ (2018). Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1016/j.biortech.2018.10.038
    Liao Z, Guo X, Hu J, Suo Y, Fu H, Wang J (2018). The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1002/btpr.2753
    Theiri M, Chadjaa H, Marinova M, Jolicoeur M (2018). Combining chemical flocculation and bacterial co-culture of Cupriavidus taiwanensis and Ureibacillus thermosphaericus to detoxify a hardwood hemicelluloses hydrolysate and enable acetone-butanol-ethanol fermentation leading to butanol.
  • DOI: 10.1128/AEM.02560-18
    Wen Z, Ledesma-Amaro R, Lin J, Jiang Y, Yang S (2019). Improved n-Butanol Production from Clostridium cellulovorans by Integrated Metabolic and Evolutionary Engineering.
  • DOI: 10.1186/s13568-019-0803-8
    Sangavai C, Bharathi M, Ganesh SP, Chellapandi P (2019). Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture.
  • DOI: 10.1016/j.enzmictec.2019.05.009
    Mukherjee M, Sarkar P, Goswami G, Das D (2019). Regulation of butanol biosynthesis in Clostridium acetobutylicum ATCC 824 under the influence of zinc supplementation and magnesium starvation.
  • DOI: 10.1186/s13568-019-0874-6
    Liao Z, Yang X, Fu H, Wang J (2019). The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s10295-019-02253-8
    Nagaroor V, Gummadi SN (2019). Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain.
  • DOI: 10.1016/j.scitotenv.2019.136399
    Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, Yang R, Wang Z (2019). Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors.
  • DOI: 10.1021/acssynbio.9b00331
    Wen Z, Ledesma-Amaro R, Lu M, Jin M, Yang S (2020). Metabolic Engineering of Clostridium cellulovorans to Improve Butanol Production by Consolidated Bioprocessing.
  • DOI: 10.1016/j.biortech.2020.122977
    He F, Qin S, Yang Z, Bai X, Suo Y, Wang J (2020). Butyric acid production from spent coffee grounds by engineered Clostridium tyrobutyricum overexpressing galactose catabolism genes.
  • DOI: 10.1099/mic.0.000916
    Kotte AK, Severn O, Bean Z, Schwarz K, Minton NP, Winzer K (2020). RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum.
  • DOI: 10.3389/fmicb.2020.602774
    Gao Y, Zhang M, Zhou X, Guo X, Lei C, Li W, Lu D (2020). Effects of Carbon Ion Beam Irradiation on Butanol Tolerance and Production of Clostridium acetobutylicum.
  • DOI: 10.1038/s41598-020-76761-4
    Zu TNK, Liu S, Gerlach ES, Mojadedi W, Sund CJ (2021). Co-feeding glucose with either gluconate or galacturonate during clostridial fermentations provides metabolic fine-tuning capabilities.
  • DOI: 10.1007/s00253-021-11174-5
    Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D (2021). Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress.
  • DOI: 10.3389/fbioe.2021.754250
    Jang YS, Seong HJ, Kwon SW, Lee YS, Im JA, Lee HL, Yoon YR, Lee SY (2021). Clostridium acetobutylicum atpG-Knockdown Mutants Increase Extracellular pH in Batch Cultures.
  • DOI: 10.1016/j.biortech.2022.127078
    Mondal S, Biswal D, Pal K, Rakshit S, Kumar Halder S, Mandavgane SA, Bera D, Hossain M, Chandra Mondal K (2022). Biodeinking of waste papers using combinatorial fungal enzymes and subsequent production of butanol from effluent.
  • DOI: 10.1128/spectrum.02288-21
    Hocq R, Jagtap S, Boutard M, Tolonen AC, Duval L, Pirayre A, Lopes Ferreira N, Wasels F (2022). Genome-Wide TSS Distribution in Three Related Clostridia with Normalized Capp-Switch Sequencing.
  • DOI: 10.1039/c9ra00325h
    Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M (2019). Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics.
  • DOI: 10.1016/j.ymben.2023.04.005
    Jang YS, Kim WJ, Im JA, Palaniswamy S, Yao Z, Lee HL, Yoon YR, Seong HJ, Papoutsakis ET, Lee SY (2023). Efforts to install a heterologous Wood-Ljungdahl pathway in Clostridium acetobutylicum enable the identification of the native tetrahydrofolate (THF) cycle and result in early induction of solvents.
  • DOI: 10.1016/j.enzmictec.2023.110244
    Kim SH, Hwang JH, Kim HJ, Oh SJ, Kim HJ, Shin N, Kim SH, Park JH, Bhatia SK, Yang YH (2023). Enhancement of biohydrogen production in Clostridium acetobutylicum ATCC 824 by overexpression of glyceraldehyde-3-phosphate dehydrogenase gene.
  • DOI: 10.1016/j.biortech.2023.129661
    Luo H, Zhou T, Cao J, Gao L, Wang S, Gui Z, Shi Y, Xie F, Yang R (2023). Utilization of lignocellulosic biomass by glycerol organosolv pretreatment for biobutanol production integrated with bioconversion of residual glycerol into value-added products.
  • DOI: 10.1016/j.abb.2023.109765
    Chalhoub E, Nassar N, Hawly M, Belovich JM (2023). Mathematical modeling of ABE fermentation on glucose substrate with Zn supplementation for enhanced butanol production.
  • DOI: 10.1007/s00449-023-02942-w
    Wang S, Wang J, Gui Z, Liu L, Xu S, Guo Y, Zhou T, Cao J, Gao R, Xie F, He A, Luo H (2023). Model construction and theoretical evaluation of the performance improvement of acetone-butanol-ethanol extractive fermentation by adding surfactant.
  • DOI: 10.1016/j.biortech.2024.130355
    Hwang JH, Kim HJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Kim SH, Park JH, Bhatia SK, Kim YG, Jang KS, Yang YH (2024). Positive effect of phasin in biohydrogen production of non polyhydroxybutyrate-producing Clostridium acetobutylicum ATCC 824.
  • DOI: 10.1007/s00253-017-8522-z
    Hijosa-Valsero M, Paniagua-Garcia AI, Diez-Antolinez R (2017). Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes.
  • DOI: 10.1016/j.wasman.2023.03.039
    Bravo-Venegas J, Prado-Acebo I, Gullon B, Lu-Chau TA, Eibes G (2023). Avoiding acid crash: From apple pomace hydrolysate to butanol through acetone-butanol-ethanol fermentation in a zero-waste approach.
  • DOI: 10.1016/s0378-1119(96)00390-3
    Sanchez-Beato AR, Garcia JL (1996). Molecular characterization of a family of choline-binding proteins of Clostridium beijerinckii NCIB 8052. Evolution and gene redundancy in prokaryotic cell.
  • DOI: 10.1128/aem.57.9.2534-2539.1991
    Mitchell WJ, Shaw JE, Andrews L (1991). Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052.
  • DOI: 10.1099/00221287-136-5-819
    Williams DR, Young DI, Young M (1990). Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum.
  • DOI: 10.1016/0147-619x(89)90027-9
    Woolley RC, Pennock A, Ashton RJ, Davies A, Young M (1989). Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum.
  • DOI: 10.1128/jb.177.4.1098-1103.1995
    Sanchez-Beato AR, Ronda C, Garcia JL (1995). Tracking the evolution of the bacterial choline-binding domain: molecular characterization of the Clostridium acetobutylicum NCIB 8052 cspA gene.
  • DOI: 10.1016/0378-1119(93)90677-u
    Oultram JD, Burr ID, Elmore MJ, Minton NP (1993). Cloning and sequence analysis of the genes encoding phosphotransbutyrylase and butyrate kinase from Clostridium acetobutylicum NCIMB 8052.
  • DOI: 10.1002/bit.260290315
    McNeil B, Kristiansen B (1987). The effect of medium composition on the acetone-butanol fermentation in continuous culture.
  • DOI: 10.1016/j.biortech.2019.122569
    Sun X, Atiyeh HK, Adesanya Y, Okonkwo C, Zhang H, Huhnke RL, Ezeji T (2019). Feasibility of using biochar as buffer and mineral nutrients replacement for acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysate.
  • DOI: 10.1007/s00449-016-1708-4
    Ra CH, Jeong GT, Kim SK (2016). Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.
  • DOI: 10.3923/pjbs.2013.1145.1151
    Khamaiseh EI, Hamid AA, Yusoff WM, Kalil MS (2013). Effect of some environmental parameters on biobutanol production by Clostridium acetobutylicum NCIMB 13357 in date fruit medium.
  • DOI: 10.1155/2014/395754
    Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS (2014). Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as carbon source in P2 medium.
  • DOI: 10.1007/s12010-017-2479-3
    Nimbalkar PR, Khedkar MA, Gaikwad SG, Chavan PV, Bankar SB (2017). New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527.
  • DOI: 10.1016/j.biortech.2019.121521
    Nimbalkar PR, Khedkar MA, Kulkarni RK, Chavan PV, Bankar SB (2019). Strategic intensification in butanol production by exogenous amino acid supplementation: Fermentation kinetics and thermodynamic studies.
  • DOI: 10.1021/acsomega.9b00583
    Nimbalkar PR, Khedkar MA, Chavan PV, Bankar SB (2019). Enhanced Biobutanol Production in Folic Acid-Induced Medium by Using Clostridium acetobutylicum NRRL B-527.
  • DOI: 10.1002/anie.201600177
    Honda Y, Hagiwara H, Ida S, Ishihara T (2016). Application to Photocatalytic H2 Production of a Whole-Cell Reaction by Recombinant Escherichia coli Cells Expressing [FeFe]-Hydrogenase and Maturases Genes.
  • DOI: 10.1007/s12010-014-0843-0
    Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014). Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.
  • DOI: 10.1016/j.scitotenv.2022.160002
    Brindha K, Mohanraj S, Rajaguru P, Pugalenthi V (2022). Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment.
  • DOI: 10.1016/j.jbiotec.2017.11.003
    Seo SO, Lu T, Jin YS, Blaschek HP (2017). Development of an oxygen-independent flavin mononucleotide-based fluorescent reporter system in Clostridium beijerinckii and its potential applications.
  • DOI: 10.1021/acs.jafc.0c00050
    Fang D, Wen Z, Lu M, Li A, Ma Y, Tao Y, Jin M (2020). Metabolic and Process Engineering of Clostridium beijerinckii for Butyl Acetate Production in One Step.
  • DOI: 10.1111/j.1574-6976.1995.tb00211.x
    Wilkinson SR, Young DI, Morris JG, Young M (1995). Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052.
  • DOI: 10.1111/j.1574-6976.1995.tb00219.x
    Minton NP, Mauchline ML, Lemmon MJ, Brehm JK, Fox M, Michael NP, Giaccia A, Brown JM (1995). Chemotherapeutic tumour targeting using clostridial spores.
  • DOI: 10.1128/AEM.64.5.1612-1619.1998
    Tangney M, Brehm JK, Minton NP, Mitchell WJ (1998). A gene system for glucitol transport and metabolism in Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1128/AEM.64.5.1780-1785.1998
    Evans VJ, Liyanage H, Ravagnani A, Young M, Kashket ER (1998). Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1046/j.1365-2672.1998.00432.x
    Tangney M, Rousse C, Yazdanian M, Mitchell WJ (1998). Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1128/AEM.65.2.499-505.1999
    Chen CK, Blaschek HP (1999). Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration.
  • DOI: 10.1099/13500872-145-6-1461
    Reid SJ, Rafudeen MS, Leat NG (1999). The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon.
  • DOI: 10.1007/s002530051504
    Chen CK, Blaschek HP (1999). Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101.
  • Quixley KW, Reid SJ (2000). Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene.
  • Liyanage H, Young M, Kashket ER (2000). Butanol tolerance of Clostridium beijerinckii NCIMB 8052 associated with down-regulation of gldA by antisense RNA.
  • Liyanage H, Holcroft P, Evans VJ, Keis S, Wilkinson SR, Kashket ER, Young M (2000). A new insertion sequence, ISCb1, from Clostridium beijernickii NCIMB 8052.
  • DOI: 10.1046/j.1365-2958.2000.02071.x
    Ravagnani A, Jennert KC, Steiner E, Grunberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000). Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia.
  • DOI: 10.1128/AEM.67.5.2004-2010.2001
    Liyanage H, Kashket S, Young M, Kashket ER (2001). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase.
  • DOI: 10.1128/AEM.67.11.5025-5031.2001
    Lee J, Blaschek HP (2001). Glucose uptake in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
  • DOI: 10.1128/AEM.67.11.5127-5133.2001
    Lopez-Contreras AM, Smidt H, van der Oost J, Claassen PA, Mooibroek H, de Vos WM (2001). Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production.
  • DOI: 10.1038/sj.jim.7000146
    Schuster KC, Goodacre R, Gapes JR, Young M (2001). Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells.
  • DOI: 10.1002/tcr.20023
    Ezeji TC, Qureshi N, Blaschek HP (2004). Butanol fermentation research: upstream and downstream manipulations.
  • DOI: 10.1099/mic.0.27587-0
    Wang F, Kashket S, Kashket ER (2005). Maintenance of DeltapH by a butanol-tolerant mutant of Clostridium beijerinckii.
  • DOI: 10.1128/AEM.71.6.3384-3387.2005
    Lee J, Mitchell WJ, Tangney M, Blaschek HP (2005). Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
  • DOI: 10.1128/aem.63.6.2306-2310.1997
    Formanek J, Mackie R, Blaschek HP (1997). Enhanced Butanol Production by Clostridium beijerinckii BA101 Grown in Semidefined P2 Medium Containing 6 Percent Maltodextrin or Glucose.
  • DOI: 10.1006/anae.1997.0127
    Collett HJ, Woods DR, Reid SJ (1997). Characterisation of a transposon-induced pleiotropic mutant of Clostridium acetobutylicum P262.
  • DOI: 10.1271/bbb.60370
    Kosaka T, Nakayama S, Nakaya K, Yoshino S, Furukawa K (2007). Characterization of the sol operon in butanol-hyperproducing Clostridium saccharoperbutylacetonicum strain N1-4 and its degeneration mechanism.
  • DOI: 10.1099/mic.0.2007/005371-0
    Stutz HE, Quixley KWM, McMaster LD, Reid SJ (2007). Co-regulation of the nitrogen-assimilatory gene cluster in Clostridium saccharobutylicum.
  • DOI: 10.4014/jmb.0804.275
    Lee J, Seo E, Kweon DH, Park K, Jin YS (2009). Fermentation of rice bran and defatted rice bran for butanol 5 production using clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1186/1471-2105-11-S11-S9
    Shi Y, Li YX, Li YY (2010). Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution.
  • DOI: 10.1007/s00253-011-3276-5
    Han B, Gopalan V, Ezeji TC (2011). Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate.
  • DOI: 10.1007/s10295-011-1017-5
    Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, Ouyang PK (2011). Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation.
  • DOI: 10.1186/1752-0509-5-130
    Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND (2011). Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1016/j.biortech.2011.08.038
    Wang Y, Blaschek HP (2011). Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1007/s00253-011-3571-1
    Ye X, Morgenroth E, Zhang X, Finneran KT (2011). Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii.
  • DOI: 10.1186/1471-2164-12-479
    Wang Y, Li X, Mao Y, Blaschek HP (2011). Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq.
  • DOI: 10.1186/1471-2164-13-102
    Wang Y, Li X, Mao Y, Blaschek HP (2012). Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq.
  • DOI: 10.1016/j.ymben.2012.05.003
    Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S (2012). Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid.
  • DOI: 10.1111/j.1472-765X.2012.03283.x
    Zhang WL, Liu ZY, Liu Z, Li FL (2012). Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1128/AEM.02969-12
    Han B, Ujor V, Lai LB, Gopalan V, Ezeji TC (2012). Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1007/s11274-013-1269-5
    Ng ZR, Takahashi K, Liu Z (2013). Isolation, characterization and evaluation of hyper 2-propanol producing bacteria from Singapore environment.
  • DOI: 10.1186/1754-6834-6-66
    Zhang Y, Ezeji TC (2013). Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation.
  • DOI: 10.1099/mic.0.069534-0
    Sandoval-Espinola WJ, Makwana ST, Chinn MS, Thon MR, Azcarate-Peril MA, Bruno-Barcena JM (2013). Comparative phenotypic analysis and genome sequence of Clostridium beijerinckii SA-1, an offspring of NCIMB 8052.
  • DOI: 10.1186/1754-6834-6-138
    Wang Y, Li X, Blaschek HP (2013). Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq.
  • DOI: 10.1128/AEM.04007-13
    Raedts J, Siemerink MA, Levisson M, van der Oost J, Kengen SW (2014). Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1007/s00253-014-5802-8
    Ujor V, Agu CV, Gopalan V, Ezeji TC (2014). Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.
  • DOI: 10.1186/s12934-014-0092-5
    Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014). Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans.
  • DOI: 10.1007/s10295-014-1493-5
    Zhang Y, Ezeji TC (2014). Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol.
  • DOI: 10.1007/s10529-014-1649-4
    Liu J, Guo T, Wang D, Ying H (2014). Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell.
  • DOI: 10.1128/genomeA.01310-14
    Noar J, Makwana ST, Bruno-Barcena JM (2014). Complete Genome Sequence of Solvent-Tolerant Clostridium beijerinckii Strain SA-1.
  • DOI: 10.1016/j.jbiotec.2015.02.005
    Wang Y, Zhang ZT, Seo SO, Choi K, Lu T, Jin YS, Blaschek HP (2015). Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system.
  • DOI: 10.1007/s00253-015-6450-3
    Ujor V, Agu CV, Gopalan V, Ezeji TC (2015). Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.
  • DOI: 10.1007/s00253-015-6484-6
    Seelert T, Ghosh D, Yargeau V (2015). Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles.
  • DOI: 10.1016/j.anaerobe.2015.03.005
    Zhang Y, Ujor V, Wick M, Ezeji TC (2015). Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1016/j.biortech.2015.03.107
    Su H, Liu G, He M, Tan F (2015). A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse.
  • DOI: 10.1186/s13068-015-0252-9
    Lee S, Lee JH, Mitchell RJ (2015). Analysis of Clostridium beijerinckii NCIMB 8052's transcriptional response to ferulic acid and its application to enhance the strain tolerance.
  • DOI: 10.1007/s12010-015-1740-x
    Oh YH, Eom GT, Kang KH, Choi JW, Song BK, Lee SH, Park SJ (2015). Optimized Transformation of Newly Constructed Escherichia coli-Clostridia Shuttle Vectors into Clostridium beijerinckii.
  • DOI: 10.1002/bab.1418
    Liu J, Guo T, Wang D, Xu J, Ying H (2015). Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.
  • DOI: 10.1093/femsle/fnv164
    Sandoval-Espinola WJ, Chinn M, Bruno-Barcena JM (2015). Inoculum optimization of Clostridium beijerinckii for reproducible growth.
  • DOI: 10.1016/j.biortech.2015.08.074
    Kwon JH, Kang H, Sang BI, Kim Y, Min J, Mitchell RJ, Lee JH (2015). Feasibility of a facile butanol bioproduction using planetary mill pretreatment.
  • DOI: 10.1007/s00253-016-7299-9
    Liu J, Guo T, Wang D, Shen X, Liu D, Niu H, Liang L, Ying H (2016). Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110.
  • DOI: 10.1007/s00449-016-1550-8
    Lee SH, Eom MH, Choi JD, Kim S, Kim J, Shin YA, Kim KH (2016). Ex situ product recovery for enhanced butanol production by Clostridium beijerinckii.
  • DOI: 10.1093/femsle/fnw031
    Kolek J, Branska B, Drahokoupil M, Patakova P, Melzoch K (2016). Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation.
  • DOI: 10.1007/s10295-016-1754-6
    Lv J, Jiao S, Du R, Zhang R, Zhang Y, Han B (2016). Proteomic analysis to elucidate degeneration of Clostridium beijerinckii NCIMB 8052 and role of Ca(2+) in strain recovery from degeneration.
  • DOI: 10.1016/j.jbiotec.2016.04.052
    Liu J, Guo T, Shen X, Xu J, Wang J, Wang Y, Liu D, Niu H, Liang L, Ying H (2016). Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.
  • DOI: 10.1002/bab.1522
    Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G (2017). Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions.
  • DOI: 10.1007/s10295-016-1798-7
    Agu CV, Ujor V, Gopalan V, Ezeji TC (2016). Use of Cupriavidus basilensis-aided bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by Clostridium beijerinckii.
  • DOI: 10.1186/s12866-016-0776-6
    Su H, Zhu J, Liu G, Tan F (2016). Investigation of availability of a high throughput screening method for predicting butanol solvent -producing ability of Clostridium beijerinckii.
  • DOI: 10.1038/srep38818
    Jiao S, Zhang Y, Wan C, Lv J, Du R, Zhang R, Han B (2016). Transcriptional analysis of degenerate strain Clostridium beijerinckii DG-8052 reveals a pleiotropic response to CaCO(3)-associated recovery of solvent production.
  • DOI: 10.1128/AEM.03386-16
    Liu ZY, Yao XQ, Zhang Q, Liu Z, Wang ZJ, Zhang YY, Li FL (2017). Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
  • DOI: 10.3389/fmicb.2017.00023
    Zhang Y, Jiao S, Lv J, Du R, Yan X, Wan C, Zhang R, Han B (2017). Sigma Factor Regulated Cellular Response in a Non-solvent Producing Clostridium beijerinckii Degenerated Strain: A Comparative Transcriptome Analysis.
  • DOI: 10.1016/j.biocel.2017.02.009
    Liu J, Guo T, Yang T, Xu J, Tang C, Liu D, Ying H (2017). Transcriptome analysis of Clostridium beijerinckii adaptation mechanisms in response to ferulic acid.
  • DOI: 10.1186/s12934-018-0884-0
    Liu J, Lin Q, Chai X, Luo Y, Guo T (2018). Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304.
  • DOI: 10.1186/s12864-018-4805-8
    Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I (2018). Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq.
  • DOI: 10.1007/s00449-018-1990-4
    de Castro Assumpcao D, Rivera EAC, Tovar LP, Ezeji TC, Filho RM, Mariano AP (2018). Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation.
  • DOI: 10.1016/j.biortech.2018.09.095
    Suo Y, Liao Z, Qu C, Fu H, Wang J (2018). Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from undetoxified corncob acid hydrolysate.
  • DOI: 10.1038/s41598-019-44061-1
    Okonkwo CC, Ujor V, Ezeji TC (2019). Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds.
  • DOI: 10.1021/acs.jafc.0c03048
    Liu J, Jiang Y, Chen J, Yang J, Jiang W, Zhuang W, Ying H, Yang S (2020). Metabolic Engineering and Adaptive Evolution of Clostridium beijerinckii To Increase Solvent Production from Corn Stover Hydrolysate.
  • DOI: 10.3389/fmicb.2020.556064
    Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, Lopez-Contreras AM (2020). Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii.
  • DOI: 10.1186/s13068-021-01886-1
    Birgen C, Degnes KF, Markussen S, Wentzel A, Sletta H (2021). Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors.
  • DOI: 10.1016/j.jbiotec.2021.02.002
    Seo SO, Lu T, Jin YS, Blaschek HP (2021). A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production.
  • DOI: 10.3389/fbioe.2021.669462
    Ujor VC, Lai LB, Okonkwo CC, Gopalan V, Ezeji TC (2021). Ribozyme-Mediated Downregulation Uncovers DNA Integrity Scanning Protein A (DisA) as a Solventogenesis Determinant in Clostridium beijerinckii.
  • DOI: 10.1016/j.biortech.2021.126167
    Adesanya Y, Atiyeh HK, Olorunsogbon T, Khanal A, Okonkwo CC, Ujor VC, Shah A, Ezeji TC (2021). Viable strategies for enhancing acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysates.
  • DOI: 10.3389/fbioe.2022.942701
    Olorunsogbon T, Adesanya Y, Atiyeh HK, Okonkwo CC, Ujor VC, Ezeji TC (2022). Effects of Clostridium beijerinckii and Medium Modifications on Acetone-Butanol-Ethanol Production From Switchgrass.
  • DOI: 10.1021/acsami.2c14888
    Jimenez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Li X, Zhang D, Wang Y (2022). Polycationic Surfaces Promote Whole-Cell Immobilization and Induce Microgranulation of Clostridium saccharoperbutylacetonicum N1-4 for Enhanced Biobutanol Production.
  • DOI: 10.3389/fmicb.2022.1075609
    Humphreys JR, Debebe BJ, Diggle SP, Winzer K (2023). Clostridium beijerinckii strain degeneration is driven by the loss of Spo0A activity.
  • DOI: 10.1016/j.synbio.2023.01.005
    Zhao R, Dong W, Yang C, Jiang W, Tian J, Gu Y (2023). Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052.
  • DOI: 10.1038/s41598-023-37220-y
    Patinios C, de Vries ST, Diallo M, Lanza L, Verbrugge PLJVQ, Lopez-Contreras AM, van der Oost J, Weusthuis RA, Kengen SWM (2023). Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a.
  • DOI: 10.1099/13500872-141-4-989
    Davison SP, Santangelo JD, Reid SJ, Woods DR (1995). A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis.
  • DOI: 10.1128/aem.59.12.4198-4202.1993
    Kashket ER, Cao ZY (1993). Isolation of a Degeneration-Resistant Mutant of Clostridium acetobutylicum NCIMB 8052.
  • DOI: 10.1128/jb.172.12.6907-6918.1990
    Gerischer U, Durre P (1990). Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum.
  • DOI: 10.1128/jb.176.21.6572-6582.1994
    Sauer U, Treuner A, Buchholz M, Santangelo JD, Durre P (1994). Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum.
  • Behrens S, Meyer U, Schankin H, Lonetto MA, Fischer RJ, Bahl H (2000). Identification of two genes encoding putative new members of the ECF subfamily of eubacterial RNA polymerase sigma factors in Clostridium acetobutylicum.
  • DOI: 10.1007/s002530051335
    Nakotte S, Schaffer S, Bohringer M, Durre P (1998). Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792.
  • DOI: 10.1099/13500872-145-8-1839
    Schreiber W, Durre P (1999). The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: isolation and purification of the enzyme, and sequencing and localization of the gap gene within a cluster of other glycolytic genes.
  • DOI: 10.1128/AEM.65.10.4295-4300.1999
    Theys J, Nuyts S, Landuyt W, Van Mellaert L, Dillen C, Bohringer M, Durre P, Lambin P, Anne J (1999). Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha.
  • DOI: 10.3109/10425170009033977
    Externbrink T, Hujer S, Winzer K, Durre P (2000). Sequence analysis of the atp operon of Clostridium acetobutylicum DSM 792 encoding the F0F1 ATP synthase.
  • DOI: 10.1099/00221287-147-1-75
    Behrens S, Mitchell W, Bahl H (2001). Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator.
  • DOI: 10.1038/sj.jim.7000144
    Thormann K, Durre P (2001). Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum?
  • DOI: 10.1016/j.femsle.2005.03.037
    Barbe S, Van Mellaert L, Theys J, Geukens N, Lammertyn E, Lambin P, Anne J (2005). Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment.
  • DOI: 10.1016/j.biortech.2010.09.004
    Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P (2010). Continuous lactose fermentation by Clostridium acetobutylicum--assessment of acidogenesis kinetics.
  • DOI: 10.1016/j.biortech.2011.09.034
    Survase SA, Sklavounos E, Jurgens G, van Heiningen A, Granstrom T (2011). Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce.
  • DOI: 10.1007/s00253-011-3761-x
    Survase SA, van Heiningen A, Granstrom T (2011). Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.
  • DOI: 10.1016/j.enzmictec.2011.11.003
    Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P (2011). Continuous lactose fermentation by Clostridium acetobutylicum--assessment of energetics and product yields of the acidogenesis.
  • DOI: 10.1016/j.biortech.2013.03.180
    Raganati F, Olivieri G, Procentese A, Russo ME, Salatino P, Marzocchella A (2013). Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.
  • DOI: 10.1016/j.biortech.2013.04.046
    Bankar SB, Survase SA, Ojamo H, Granstrom T (2013). The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production.
  • DOI: 10.1016/j.biortech.2014.04.054
    Procentese A, Raganati F, Olivieri G, Russo ME, Salatino P, Marzocchella A (2014). Continuous xylose fermentation by Clostridium acetobutylicum--kinetics and energetics issues under acidogenesis conditions.
  • DOI: 10.1016/j.anaerobe.2015.05.008
    Raganati F, Olivieri G, Gotz P, Marzocchella A, Salatino P (2015). Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum.
  • DOI: 10.1128/AEM.00408-20
    Wasels F, Chartier G, Hocq R, Lopes Ferreira N (2020). A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792.
  • DOI: 10.1128/aem.02135-22
    Delarouzee A, Lopes Ferreira N, Wasels F (2023). Alleviation of Carbon Catabolite Repression through araR and xylR Inactivation in Clostridium acetobutylicum DSM 792.
  • DOI: 10.1128/aem.00282-24
    Delarouzee A, Lopes Ferreira N, Baum C, Wasels F (2024). Gene essentiality in the solventogenic Clostridium acetobutylicum DSM 792.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:32727
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license