Strain sc|0032758


This strain is associated as type material for multiple names:

StrainInfo: SI-ID 3281 T

Taxon
Lactobacillus delbrueckii subsp. bulgaricus (not Lactobacillus bulgaricus)
Sample
Bulgarian yoghurt
Cultures (29)
LMG 6901 = ATCC 11842 = IAM 12472 = IFO 13953 = IMET 10708 = JCM 1002 = LMG 13551 = NCFB 1489 = NCIMB 11778 = CIP 101027 = CCUG 21450 = NCDO 1489 = NCIB 11778 = CCRC 10696 = CECT 4005 = VKM B-1923 = LMD 46.76 = KCTC 3635 = CCUG 41390 = NBRC 13953 = NCTC 12712 = CCM 7190 = NCCB 90022 = LMD 90.22 = NCCB 46076 = BCRC 10696 = CDBB 793 = VTT E-96662 = DSM 20081
Other Designations (19)
Orla-Jensen 14 = IPCR S1-3 = WDCM 00102 = Hansen Lb14 = FIRDI 696 = S. Orla-Jensen 14 = LMG 6901T QC 08/03 = PRSF-L143 = PRSF-L145 = LMG 6901t2T = DSMZ 20081 = LMG 6901 QC01/04 = LMG 6901t1T = NRIC 1688 = P.A. Hansen Lb14 = LMG 6901T QC 3/00 = EC-Target Strain 2 = Hansen LB14 = Lb.14
Sequences (51)
Associated Publications (40)
  • DOI: 10.1111/jam.12085
    Lakshminarayanan B, Guinane CM, O'Connor PM, Coakley M, Hill C, Stanton C, O'Toole PW, Ross RP (2012). Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects.
  • DOI: 10.1016/s0168-1605(03)00298-8
    De Vuyst L, Avonts L, Neysens P, Hoste B, Vancanneyt M, Swings J, Callewaert R (2004). The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations.
  • DOI: 10.1128/jb.107.1.382-384.1971
    Simonds J, Hansen PA, Lakshmanan S (1971). Deoxyribonucleic acid hybridization among strains of lactobacilli.
  • DOI: 10.1128/jb.178.8.2459-2461.1996
    Kim SI, Germond JE, Pridmore D, Soll D (1996). Lactobacillus bulgaricus asparagine synthetase and asparaginyl-tRNA synthetase: coregulation by transcription antitermination?
  • DOI: 10.1016/j.resmic.2005.09.006
    Ben Zakour N, Grimaldi C, Gautier M, Langella P, Azevedo V, Maguin E, Le Loir Y (2005). Testing of a whole genome PCR scanning approach to identify genomic variability in four different species of lactic acid bacteria.
  • DOI: 10.1111/jam.12240
    Khan H, Flint SH, Yu PL (2013). Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510.
  • DOI: 10.1111/jam.12990
    Zhang C, Guo T, Xin Y, Gao X, Kong J (2015). Catabolite responsive element deficiency of xyl operon resulting in carbon catabolite derepression in Lactobacillus fermentum 1001.
  • DOI: 10.1128/AEM.66.12.5306-5311.2000
    Chervaux C, Ehrlich SD, Maguin E (2000). Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium.
  • DOI: 10.1111/j.1750-3841.2009.01141.x
    Pham TT, Shah NP (2009). Performance of starter in yogurt supplemented with soy protein isolate and biotransformation of isoflavones during storage period.
  • DOI: 10.3920/BM2012.0012
    Ben-Yahia L, Mayeur C, Rul F, Thomas M (2012). Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats.
  • DOI: 10.3168/jds.2021-20905
    Zhao JC, Mu YL, Gu XY, Xu XN, Guo TT, Kong J (2021). Site-directed mutation of beta-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making.
  • DOI: 10.3168/jds.2022-22123
    Xue ZP, Cu X, Xu K, Peng JH, Liu HR, Zhao RT, Wang Z, Wang T, Xu ZS (2022). The effect of glutathione biosynthesis of Streptococcus thermophilus ST-1 on cocultured Lactobacillus delbrueckii ssp. bulgaricus ATCC11842.
  • DOI: 10.1016/0300-9084(89)90158-2
    Ragout A, Holgado AP, Oliver G, Sineriz F (1989). Presence of an L(+)-lactate dehydrogenase in cells of Lactobacillus delbrueckii ssp. bulgaricus.
  • DOI: 10.3168/jds.S0022-0302(97)76182-4
    Burton JP, Tannock GW (1997). Properties of porcine and yogurt lactobacilli in relation to lactose intolerance.
  • DOI: 10.1016/S0378-1097(03)00594-9
    Serror P, Dervyn R, Ehrlich SD, Maguin E (2003). csp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock.
  • DOI: 10.1016/j.resmic.2009.09.004
    Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, Haser R, Bejar S (2009). Exploring the acidotolerance of beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion.
  • DOI: 10.1111/j.1348-0421.2010.00219.x
    Tok E, Aslim B (2010). Cholesterol removal by some lactic acid bacteria that can be used as probiotic.
  • DOI: 10.3920/BM2011.0025
    Do Carmo AP, da Silva DF, De Oliveira MN, Borges AC, De Carvalho AF, De Moraes CA (2011). Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.
  • DOI: 10.3920/BM2011.0037
    Do Carmo AP, De Oliveira MN, Da Silva DF, Castro SB, Borges AC, De Carvalho AF, De Moraes CA (2012). Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.
  • DOI: 10.3920/BM2013.0022
    Ferreira AB, De Oliveira MNV, Freitas FS, Alfenas-Zerbini P, Da Silva DF, De Queiroz MV, Borges AC, De Moraes CA (2013). Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts.
  • DOI: 10.3920/BM2014.0122
    Ferreira AB, Oliveira MN, Freitas FS, Paiva AD, Alfenas-Zerbini P, Silva DF, Queiroz MV, Borges AC, Moraes CA (2015). Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.
  • DOI: 10.3168/jds.2015-10700
    Li C, Zhang GF, Mao X, Wang JY, Duan CY, Wang ZJ, Liu LB (2016). Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.
  • DOI: 10.3168/jds.2017-14155
    Nwamaioha NO, Ibrahim SA (2018). A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus.
  • DOI: 10.1186/s12934-020-1278-7
    Zhang G, Liu L, Li C (2020). Effects of ccpA gene deficiency in Lactobacillus delbrueckii subsp. bulgaricus under aerobic conditions as assessed by proteomic analysis.
  • DOI: 10.3168/jds.2019-18003
    Li C, Niu Z, Zou M, Liu S, Wang M, Gu X, Lu H, Tian H, Jha R (2020). Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms.
  • DOI: 10.1007/s00253-020-10788-5
    Li W, Yang L, Nan W, Lu J, Zhang S, Ujiroghene OJ, Pang X, Lv J (2020). Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ.
  • DOI: 10.1039/d1fo01357b
    Zhang S, Li D, Zhang X, Sun Y, Xu S, Wang X, Zhang N, Wang M, Tian H, Li C (2021). Global transcriptomic analysis of Lactobacillus delbrueckii subsp. bulgaricus ATCC11842 reveals the role of LDB_RS05285 in the post-acidification of yogurt.
  • DOI: 10.1007/s00216-021-03774-x
    Girardeau A, Passot S, Meneghel J, Cenard S, Lieben P, Trelea IC, Fonseca F (2021). Insights into lactic acid bacteria cryoresistance using FTIR microspectroscopy.
  • DOI: 10.1038/s41598-021-95356-1
    Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R (2021). Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake.
  • DOI: 10.1016/s0168-1605(96)01180-4
    Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T (1997). Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6.
  • DOI: 10.1016/s0168-1605(02)00184-8
    Ogwaro BA, Gibson H, Whitehead M, Hill DJ (2002). Survival of Escherichia coli O157:H7 in traditional African yoghurt fermentation.
  • DOI: 10.1006/cryo.2000.2240
    Panoff JM, Thammavongs B, Gueguen M (2000). Cryoprotectants lead to phenotypic adaptation to freeze-thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T.
  • DOI: 10.1128/aem.58.1.215-220.1992
    Grinstead DA, Barefoot SF (1992). Jenseniin G, a heat-stable bacteriocin produced by Propionibacterium jensenii P126.
  • DOI: 10.1099/00221287-148-7-2029
    Aubel D, Germond JE, Gilbert C, Atlan D (2002). Isolation of the patC gene encoding the cystathionine beta-lyase of Lactobacillus delbrueckii subsp. bulgaricus and molecular analysis of inter-strain variability in enzyme biosynthesis.
  • DOI: 10.1099/ijsem.0.002949
    Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS (2018). Lactobacillus porci sp. nov., isolated from small intestine of a swine.
  • DOI: 10.1016/j.foodres.2017.04.014
    Yilmaz C, Gokmen V (2017). Formation of tyramine in yoghurt during fermentation - Interaction between yoghurt starter bacteria and Lactobacillus plantarum.
  • DOI: 10.3389/fmicb.2022.803688
    Khalil MA, Sonbol FI, Al-Madboly LA, Aboshady TA, Alqurashi AS, Ali SS (2022). Exploring the Therapeutic Potentials of Exopolysaccharides Derived From Lactic Acid Bacteria and Bifidobacteria: Antioxidant, Antitumor, and Periodontal Regeneration.
  • DOI: 10.1016/j.jbiosc.2011.10.012
    Mende S, Krzyzanowski L, Weber J, Jaros D, Rohm H (2011). Growth and exopolysaccharide yield of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081 in batch and continuous bioreactor experiments at constant pH.
  • DOI: 10.1021/jf203909e
    Nguyen TT, Nguyen HA, Arreola SL, Mlynek G, Djinovic-Carugo K, Mathiesen G, Nguyen TH, Haltrich D (2012). Homodimeric beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization.
  • DOI: 10.1021/acs.jafc.5b06009
    Arreola SL, Intanon M, Wongputtisin P, Kosma P, Haltrich D, Nguyen TH (2016). Transferase Activity of Lactobacillal and Bifidobacterial beta-Galactosidases with Various Sugars as Galactosyl Acceptors.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:32758
Local history
  • Registered 12 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license