Strain sc|0034317


Strain numbers

ATCC 19258 = CCUG 21957 = CIP 102303 = DSM 20617 = LMG 6896 (Cat. ) = NBIMCC 3916 = NCDO 573 = NCFB 573 = NCIB 8510 = NCIMB 8510
This strain is associated as type material for multiple names:

StrainInfo: SI-ID 92381 T

Taxon
Streptococcus thermophilus (not Streptococcus salivarius subsp. thermophilus)
Sample
Pasteurized milk
Cultures (20)
LMG 6896 = ATCC 19258 = CCUG 21957 = DSM 20617 = LMG 13102 = NCFB 573 = NCIMB 8510 = NCDO 573 = NCIB 8510 = CIP 102303 = CECT986 = CCRC 13869 = KCTC 3658 = NCCB 97162 = LMD 97.162 = BCRC 13869 = NBIMCC 3916 = CNCTC 6717 = VTT E-96665 = JCM 17834
Other Designations (18)
WDCM 00134 = USCC 2083 = CCTM 3104 = strain B or R = B or R = LMG 6896QC3/01 = B of R ATCC19258 = CCTM La 3104 = LMG 6896T QC06/04 = CNCTC Str 28/89 = PRSF-S001 = Shattock strain B or R = LMG 13102QC2/02 = CNCTC 28/89 = LMG 6896T QC 10/96 = DSMZ 20617 = B of R = NCTC 12958
Sequences (38)
Associated Publications (26)
  • DOI: 10.1099/00221287-137-2-369
    Schroeder CJ, Robert C, Lenzen G, McKay LL, Mercenier A (1991). Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus beta-galactosidase sequences.
  • DOI: 10.3168/jds.S0022-0302(87)80036-X
    Teraguchi S, Ono J, Kiyosawa I, Okonogi S (1987). Oxygen uptake activity and aerobic metabolism of Streptococcus thermophilus STH450.
  • DOI: 10.1128/aem.63.11.4593-4596.1997
    Satoh E, Ito Y, Sasaki Y, Sasaki T (1997). Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains.
  • Lysenko AM, Botina SG, Ganina VI, Sukhodolets VV (2001). [Divergence in the level of DNA hybridization and formation of sibling species in the lactic acid bacteria Streptococcus thermophilus].
  • DOI: 10.1136/gut.52.7.988
    Resta-Lenert S, Barrett KE (2003). Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC).
  • DOI: 10.1128/AEM.71.3.1364-1372.2005
    Cochu A, Roy D, Vaillancourt K, Lemay JD, Casabon I, Frenette M, Moineau S, Vadeboncoeur C (2005). The doubly phosphorylated form of HPr, HPr(Ser~P)(His-P), is abundant in exponentially growing cells of Streptococcus thermophilus and phosphorylates the lactose transporter LacS as efficiently as HPr(His~P).
  • Botina SG, Trenina MA, Tsygankov IuD, Sukhodolets VV (2007). [Comparison of genotypic and biochemical characteristics of Streptococcus thermophilus strains isolated from sour milk products].
  • DOI: 10.1111/j.1740-0929.2009.00680.x
    Shimosato T, Tohno M, Sato T, Nishimura J, Kawai Y, Saito T, Kitazawa H (2009). Identification of a potent immunostimulatory oligodeoxynucleotide from Streptococcus thermophilus lacZ.
  • DOI: 10.1155/2011/378417
    Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S (2011). Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells.
  • DOI: 10.1271/bbb.110646
    Miyauchi E, Morita M, Rossi M, Morita H, Suzuki T, Tanabe S (2012). Effect of D-alanine in teichoic acid from the Streptococcus thermophilus cell wall on the barrier-protection of intestinal epithelial cells.
  • DOI: 10.1186/s12944-015-0019-0
    Ogawa A, Kobayashi T, Sakai F, Kadooka Y, Kawasaki Y (2015). Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects.
  • DOI: 10.4315/0362-028X-54.7.537
    Sinha RP (1991). Effect of Carbohydrate on the Viability of Streptococcus thermophilus.
  • DOI: 10.3390/microorganisms8050733
    Tenea GN, Suarez J (2020). Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture.
  • DOI: 10.1007/s00203-020-02156-8
    Cho H, Park KE, Kim KS (2021). Genome analysis of Streptococcus salivarius subsp. thermophilus type strain ATCC 19258 and its comparison to equivalent strain NCTC 12958.
  • DOI: 10.1007/s00203-021-02313-7
    Karadeniz DG, Kaskatepe B, Kiymaci ME, Tok KC, Gumustas M, Karaaslan C (2021). Microbial exopolysaccharide production of Streptococcus thermophilus and its antiquorum sensing activity.
  • DOI: 10.3390/ijms24054693
    Choi SM, Lin H, Xie W, Chu IK (2023). Study of Potential Synergistic Effect of Probiotic Formulas on Acrylamide Reduction.
  • DOI: 10.1099/ijsem.0.006442
    Nguyen HV, Trinh ATV, Bui LNH, Hoang ATL, Tran QTL, Trinh TT (2024). Streptococcus raffinosi sp. nov., isolated from human breast milk samples.
  • DOI: 10.1046/j.1365-2672.2003.02148.x
    Mora D, Maguin E, Masiero M, Parini C, Ricci G, Manachini PL, Daffonchio D (2004). Characterization of urease genes cluster of Streptococcus thermophilus.
  • DOI: 10.1016/j.resmic.2005.04.005
    Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL (2005). Urease biogenesis in Streptococcus thermophilus.
  • DOI: 10.1111/j.1365-2672.2009.04213.x
    Arioli S, Monnet C, Guglielmetti S, Mora D (2009). Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk.
  • DOI: 10.1099/mic.0.024737-0
    Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D (2009). The relevance of carbon dioxide metabolism in Streptococcus thermophilus.
  • DOI: 10.3389/fmicb.2014.00098
    Ali Y, Koberg S, Hessner S, Sun X, Rabe B, Back A, Neve H, Heller KJ (2014). Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type.
  • DOI: 10.1111/1574-6968.12449
    Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D (2014). Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus.
  • DOI: 10.3389/fmicb.2018.02719
    Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D (2018). Role of Temperate Bacteriophage varphi20617 on Streptococcus thermophilus DSM 20617(T) Autolysis and Biology.
  • DOI: 10.1016/j.ijfoodmicro.2024.110684
    Arioli S, Mangieri N, Zanchetta Y, Russo P, Mora D (2024). Substitution of Asp29 with Asn29 in the metallochaperone UreE of Streptococcus thermophilus DSM 20617(T) increases the urease activity and anticipates urea hydrolysis during milk fermentation.
  • DOI: 10.1128/AEM.66.12.5360-5367.2000
    Deutsch SM, Molle D, Gagnaire V, Piot M, Atlan D, Lortal S (2000). Hydrolysis of sequenced beta-casein peptides provides new insight into peptidase activity from thermophilic lactic acid bacteria and highlights intrinsic resistance of phosphopeptides.
Outside links and data sources
Retrieved 13 days ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:34317
Local history
  • Registered about 1 year ago
  • Last modified 13 days ago
© 2022-2026 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license