-
DOI: 10.1099/00221287-134-12-3151
Richards DF, Linnett PE, Oultram JD, Young M
(1988).
Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568.
-
DOI: 10.1016/0167-4781(93)90096-v
Zinoni F, Robson RM, Robson RL
(1993).
Organization of potential alternative nitrogenase genes from Clostridium pasteurianum.
-
DOI: 10.1128/jb.155.1.432-434.1983
Minton NP, Morris JG
(1983).
Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013.
-
DOI: 10.1002/jobm.200410490
Chien CC
(2005).
Arylsulfonates as sole source of sulfur for Clostridium pasteurianum DSM 12136.
-
DOI: 10.1007/s00253-011-3766-5
Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C
(2011).
Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.
-
DOI: 10.1128/genomeA.00232-12
Rappert S, Song L, Sabra W, Wang W, Zeng AP
(2013).
Draft Genome Sequence of Type Strain Clostridium pasteurianum DSM 525 (ATCC 6013), a Promising Producer of Chemicals and Fuels.
-
DOI: 10.1186/1754-6834-6-50
Pyne ME, Moo-Young M, Chung DA, Chou CP
(2013).
Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum.
-
DOI: 10.1016/j.jbiotec.2014.03.017
Venkataramanan KP, Kurniawan Y, Boatman JJ, Haynes CH, Taconi KA, Martin L, Bothun GD, Scholz C
(2014).
Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation.
-
DOI: 10.1128/genomeA.00790-14
Pyne ME, Utturkar S, Brown SD, Moo-Young M, Chung DA, Chou CP
(2014).
Improved Draft Genome Sequence of Clostridium pasteurianum Strain ATCC 6013 (DSM 525) Using a Hybrid Next-Generation Sequencing Approach.
-
DOI: 10.1128/genomeA.01596-14
Rotta C, Poehlein A, Schwarz K, McClure P, Daniel R, Minton NP
(2015).
Closed Genome Sequence of Clostridium pasteurianum ATCC 6013.
-
DOI: 10.1186/s13068-015-0408-7
Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET
(2015).
Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.
-
DOI: 10.1128/AEM.02128-16
Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP
(2016).
Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
-
DOI: 10.1016/j.biortech.2011.01.046
Ahn JH, Sang BI, Um Y
(2011).
Butanol production from thin stillage using Clostridium pasteurianum.
-
DOI: 10.1016/j.biortech.2011.08.094
Moon C, Lee CH, Sang BI, Um Y
(2011).
Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum.
-
DOI: 10.1038/srep06961
Choi O, Kim T, Woo HM, Um Y
(2014).
Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum.
-
DOI: 10.1128/genomeA.01591-14
Poehlein A, Grosse-Honebrink A, Zhang Y, Minton NP, Daniel R
(2015).
Complete Genome Sequence of the Nitrogen-Fixing and Solvent-Producing Clostridium pasteurianum DSM 525.
-
DOI: 10.1016/j.jbiotec.2015.10.008
Gallazzi A, Branska B, Marinelli F, Patakova P
(2015).
Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells.
-
DOI: 10.1016/j.biortech.2016.02.062
Sarchami T, Johnson E, Rehmann L
(2016).
Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.
-
DOI: 10.1016/j.nbt.2016.03.002
Gallardo R, Alves M, Rodrigues LR
(2016).
Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum.
-
DOI: 10.1099/ijsem.0.003523
Huang Y, Wei Z, Cong L, Qiu Z, Chen R, Deng Y, Zhang Y, Fan H, Ma S
(2019).
Clostridium prolinivorans sp. nov., a thermophilic bacterium isolated from an anaerobic reactor degrading propionate.
-
DOI: 10.1021/acsomega.9b00879
Sarchami T, Rehmann L
(2019).
Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by Clostridium pasteurianum DSM 525.
-
DOI: 10.1002/elsc.201700198
Utesch T, Zeng AP
(2018).
A novel All-in-One electrolysis electrode and bioreactor enable better study of electrochemical effects and electricity-aided bioprocesses.