Strain sc|0035494


Strain numbers

ATCC 6013 = BCRC 10942 = CCRC 10942 = CCUG 31328 = DSM 525 = JCM 1408 = KCTC 1674 = LMG 3285 = NCIB 9486 = NCIMB 9486 = VKM B-1774

StrainInfo: SI-ID 44729 T

Taxon
Clostridium pasteurianum
Cultures (18)
LMG 3285 = ATCC 6013 = CECT 377 = DSM 525 = LMG 5709 = NCIB 9486 = VKM B-1774 = CCUG 31328 = JCM 1408 = CCRC 10942 = KCTC 1674 = NCIMB 9486 = NCDO1845 = NCFB 1845 = IMET 11346 = CCT 0203 = BCRC 10942 = JCM 1108
Other Designations (17)
FIRDI 942 = McCoy 5 = Winogradsky W-5 = IMG 1584b = McClung 2300 = DSMZ 525 = LMAU C85 = McClung L.S., 2300 = W-5 = LMG3285T QC 6/05 = IZ 563 = E. McCoy 5 = L.S. McClung 2300 = McCoy E. 5 = McClung 2000 = NCTC 11833 = NCIB 10671
Sequences (25)
Associated Publications (22)
  • DOI: 10.1099/00221287-134-12-3151
    Richards DF, Linnett PE, Oultram JD, Young M (1988). Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568.
  • DOI: 10.1016/0167-4781(93)90096-v
    Zinoni F, Robson RM, Robson RL (1993). Organization of potential alternative nitrogenase genes from Clostridium pasteurianum.
  • DOI: 10.1128/jb.155.1.432-434.1983
    Minton NP, Morris JG (1983). Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013.
  • DOI: 10.1002/jobm.200410490
    Chien CC (2005). Arylsulfonates as sole source of sulfur for Clostridium pasteurianum DSM 12136.
  • DOI: 10.1007/s00253-011-3766-5
    Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2011). Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.
  • DOI: 10.1128/genomeA.00232-12
    Rappert S, Song L, Sabra W, Wang W, Zeng AP (2013). Draft Genome Sequence of Type Strain Clostridium pasteurianum DSM 525 (ATCC 6013), a Promising Producer of Chemicals and Fuels.
  • DOI: 10.1186/1754-6834-6-50
    Pyne ME, Moo-Young M, Chung DA, Chou CP (2013). Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum.
  • DOI: 10.1016/j.jbiotec.2014.03.017
    Venkataramanan KP, Kurniawan Y, Boatman JJ, Haynes CH, Taconi KA, Martin L, Bothun GD, Scholz C (2014). Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation.
  • DOI: 10.1128/genomeA.00790-14
    Pyne ME, Utturkar S, Brown SD, Moo-Young M, Chung DA, Chou CP (2014). Improved Draft Genome Sequence of Clostridium pasteurianum Strain ATCC 6013 (DSM 525) Using a Hybrid Next-Generation Sequencing Approach.
  • DOI: 10.1128/genomeA.01596-14
    Rotta C, Poehlein A, Schwarz K, McClure P, Daniel R, Minton NP (2015). Closed Genome Sequence of Clostridium pasteurianum ATCC 6013.
  • DOI: 10.1186/s13068-015-0408-7
    Sandoval NR, Venkataramanan KP, Groth TS, Papoutsakis ET (2015). Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.
  • DOI: 10.1128/AEM.02128-16
    Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP (2016). Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
  • DOI: 10.1016/j.biortech.2011.01.046
    Ahn JH, Sang BI, Um Y (2011). Butanol production from thin stillage using Clostridium pasteurianum.
  • DOI: 10.1016/j.biortech.2011.08.094
    Moon C, Lee CH, Sang BI, Um Y (2011). Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum.
  • DOI: 10.1038/srep06961
    Choi O, Kim T, Woo HM, Um Y (2014). Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum.
  • DOI: 10.1128/genomeA.01591-14
    Poehlein A, Grosse-Honebrink A, Zhang Y, Minton NP, Daniel R (2015). Complete Genome Sequence of the Nitrogen-Fixing and Solvent-Producing Clostridium pasteurianum DSM 525.
  • DOI: 10.1016/j.jbiotec.2015.10.008
    Gallazzi A, Branska B, Marinelli F, Patakova P (2015). Continuous production of n-butanol by Clostridium pasteurianum DSM 525 using suspended and surface-immobilized cells.
  • DOI: 10.1016/j.biortech.2016.02.062
    Sarchami T, Johnson E, Rehmann L (2016). Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.
  • DOI: 10.1016/j.nbt.2016.03.002
    Gallardo R, Alves M, Rodrigues LR (2016). Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum.
  • DOI: 10.1099/ijsem.0.003523
    Huang Y, Wei Z, Cong L, Qiu Z, Chen R, Deng Y, Zhang Y, Fan H, Ma S (2019). Clostridium prolinivorans sp. nov., a thermophilic bacterium isolated from an anaerobic reactor degrading propionate.
  • DOI: 10.1021/acsomega.9b00879
    Sarchami T, Rehmann L (2019). Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by Clostridium pasteurianum DSM 525.
  • DOI: 10.1002/elsc.201700198
    Utesch T, Zeng AP (2018). A novel All-in-One electrolysis electrode and bioreactor enable better study of electrochemical effects and electricity-aided bioprocesses.
Outside links and data sources
Retrieved 5 months ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:35494
Local history
  • Registered 11 months ago
  • Last modified 5 months ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license