-
DOI: 10.1016/j.ijfoodmicro.2017.02.012
Xu Y, Wang Y, Coda R, Sade E, Tuomainen P, Tenkanen M, Katina K
(2017).
In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour.
-
DOI: 10.1016/j.carbpol.2018.02.082
Xu Y, Pitkanen L, Maina NH, Coda R, Katina K, Tenkanen M
(2018).
Interactions between fava bean protein and dextrans produced by Leuconostoc pseudomesenteroides DSM 20193 and Weissella cibaria Sj 1b.
-
DOI: 10.1016/j.foodres.2018.08.054
Xu Y, Coda R, Holopainen-Mantila U, Laitila A, Katina K, Tenkanen M
(2018).
Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate.
-
DOI: 10.1016/j.foodres.2020.109785
Galli V, Venturi M, Coda R, Maina NH, Granchi L
(2020).
Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough.
-
DOI: 10.1186/s12934-021-01515-4
Koirala P, Maina NH, Nihtila H, Katina K, Coda R
(2021).
Brewers' spent grain as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16.
-
DOI: 10.3390/foods10071489
Perri G, Rizzello CG, Ampollini M, Celano G, Coda R, Gobbetti M, De Angelis M, Calasso M
(2021).
Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties.
-
DOI: 10.1271/bbb.60.319
Kawasaki H, Nakamura N, Ohmori M, Amari K, Sakai T
(1996).
Screening for bacteria producing sucrose phosphorylase and characterization of the enzymes.
-
DOI: 10.1271/bbb.60.322
Kawasaki H, Nakamura N, Ohmori M, Sakai T
(1996).
Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165.
-
DOI: 10.13345/j.cjb.190498
Li X, Xia Y, Shen W, Yang H, Cao Y, Chen X
(2020).
[Characterization of a sucrose phosphorylase from Leuconostoc mesenterides for the synthesis of alpha-arbutin].
-
DOI: 10.1007/s00253-003-1470-9
Kaup B, Bringer-Meyer S, Sahm H
(2003).
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.
-
Kaup B, Bringer-Meyer S, Sahm H
(2003).
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.
-
DOI: 10.1002/biot.200700055
Baumchen C, Roth AH, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D
(2007).
D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium.
-
DOI: 10.1007/s00203-002-0507-2
Hahn G, Kaup B, Bringer-Meyer S, Sahm H
(2003).
A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene.
-
DOI: 10.1016/j.jbiotec.2004.11.001
Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M
(2005).
Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides.
-
Wang X, Chen J, Liu P, Xu H, Yu P, Zhang X
(2013).
[Production of D-mannitol by metabolically engineered Escherichia coli].
-
DOI: 10.1128/JB.05433-11
Kim DW, Choi SH, Kang A, Nam SH, Kim RN, Kim A, Kim DS, Park HS
(2011).
Genome sequence of Leuconostoc pseudomesenteroides KCTC 3652.