Ecology, Evolution, Behavior and Systematics


Publications
589

Increased Biosynthetic Gene Dosage in a Genome-Reduced Defensive Bacterial Symbiont

Citation
Lopera et al. (2017). mSystems 2 (6)
Names
“Didemniditutus” “Didemniditutus mandelae”
Abstract
Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we desc

Mimicking microbial interactions under nitrate‐reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio

Citation
Arshad et al. (2017). Environmental Microbiology 19 (12)
Names
“Nitrobium” “Nitrobium versatile”
Abstract
SummaryMicroorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate‐reducing microbial community in a laboratory‐scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation o

Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium “ Candidatus Nitrospira nitrosa”

Citation
Camejo et al. (2017). mSystems 2 (5)
Names
Ca. Nitrospira nitrosa
Abstract
Nitrospira -like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of