SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors McMahon

JSON
See as cards

McMahon, Katherine D.


Publications
14

  • ←
  • 1
  • 2
  • →
CitationNamesAbstract
Bacterial Community and “ Candidatus Accumulibacter” Population Dynamics in Laboratory-Scale Enhanced Biological Phosphorus Removal Reactors He et al. (2010). Applied and Environmental Microbiology 76 (16) “Accumulibacter”
Text
Metatranscriptomic array analysis of ‘ Candidatus Accumulibacter phosphatis’‐enriched enhanced biological phosphorus removal sludge He et al. (2010). Environmental Microbiology 12 (5) “Accumulibacter phosphatis”
Text
Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal Peterson et al. (2008). Environmental Microbiology 10 (10) “Accumulibacter”
Text
“ Candidatus Accumulibacter” Population Structure in Enhanced Biological Phosphorus Removal Sludges as Revealed by Polyphosphate Kinase Genes He et al. (2007). Applied and Environmental Microbiology 73 (18) “Accumulibacter”
Text
  • ←
  • 1
  • 2
  • →

Bacterial Community and “ Candidatus Accumulibacter” Population Dynamics in Laboratory-Scale Enhanced Biological Phosphorus Removal Reactors
ABSTRACT “ Candidatus Accumulibacter” and total bacterial community dynamics were studied in two lab-scale enhanced biological phosphorus removal (EBPR) reactors by using a community fingerprint technique, automated ribosomal intergenic spacer analysis (ARISA). We first evaluated the quantitative capability of ARISA compared to quantitative real-time PCR (qPCR). ARISA and qPCR provided comparable relative quantification of the two dominant “ Ca . Accumulibacter” clades (IA and IIA) detected in our reactors. The quantification of total “ Ca . Accumulibacter” 16S rRNA genes relative to that from the total bacterial community was highly correlated, with ARISA systematically underestimating “ Ca . Accumulibacter” abundance, probably due to the different normalization techniques applied. During 6 months of normal (undisturbed) operation, the distribution of the two clades within the total “ Ca . Accumulibacter” population was quite stable in one reactor while comparatively dynamic in the other reactor. However, the variance in the clade distribution did not appear to affect reactor performance. Instead, good EBPR activity was positively associated with the abundance of total “ Ca . Accumulibacter.” Therefore, we concluded that the different clades in the system provided functional redundancy. We disturbed the reactor operation by adding nitrate together with acetate feeding in the anaerobic phase to reach initial reactor concentrations of 10 mg/liter NO 3 -N for 35 days. The reactor performance deteriorated with a concomitant decrease in the total “ Ca . Accumulibacter” population, suggesting that a population shift was the cause of performance upset after a long exposure to nitrate in the anaerobic phase.
Metatranscriptomic array analysis of ‘ Candidatus Accumulibacter phosphatis’‐enriched enhanced biological phosphorus removal sludge
Summary Here we report the first metatranscriptomic analysis of gene expression and regulation of ‘ Candidatus Accumulibacter’‐enriched lab‐scale sludge during enhanced biological phosphorus removal (EBPR). Medium density oligonucleotide microarrays were generated with probes targeting most predicted genes hypothesized to be important for the EBPR phenotype. RNA samples were collected at the early stage of anaerobic and aerobic phases (15 min after acetate addition and switching to aeration respectively). We detected the expression of a number of genes involved in the carbon and phosphate metabolisms, as proposed by EBPR models (e.g. polyhydroxyalkanoate synthesis, a split TCA cycle through methylmalonyl‐CoA pathway, and polyphosphate formation), as well as novel genes discovered through metagenomic analysis. The comparison between the early stage anaerobic and aerobic gene expression profiles showed that expression levels of most genes were not significantly different between the two stages. The majority of upregulated genes in the aerobic sample are predicted to encode functions such as transcription, translation and protein translocation, reflecting the rapid growth phase of Accumulibacter shortly after being switched to aerobic conditions. Components of the TCA cycle and machinery involved in ATP synthesis were also upregulated during the early aerobic phase. These findings support the predictions of EBPR metabolic models that the oxidation of intracellularly stored carbon polymers through the TCA cycle provides ATP for cell growth when oxygen becomes available. Nitrous oxide reductase was among the very few Accumulibacter genes upregulated in the anaerobic sample, suggesting that its expression is likely induced by the deprivation of oxygen.
Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal
Summary Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal, but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for global dispersal of particular Candidatus Accumulibacter strains, which we hypothesize is facilitated by the ability of Candidatus Accumulibacter to persist in environmental habitats. In the current study, we used sequencing of a phylogenetic marker, the ppk 1 gene, to characterize Candidatus Accumulibacter populations in diverse environments, at varying distances from WWTPs. We discovered several new lineages of Candidatus Accumulibacter which had not previously been detected in WWTPs, and also uncovered new diversity and structure within previously detected lineages. Habitat characteristics were found to be a key determinant of Candidatus Accumulibacter lineage distribution while, as predicted, geographic distance played little role in limiting dispersal on a regional scale. However, on a local scale, enrichment of particular Candidatus Accumulibacter lineages in WWTP appeared to impact local environmental populations. These results provide evidence of ecological differences among Candidatus Accumulibacter lineages.
“ Candidatus Accumulibacter” Population Structure in Enhanced Biological Phosphorus Removal Sludges as Revealed by Polyphosphate Kinase Genes
ABSTRACT We investigated the fine-scale population structure of the “ Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene ( ppk1 ) as a genetic marker. We retrieved fragments of “ Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “ Candidatus Accumulibacter” lineage. Sequences from at least five clades of “ Candidatus Accumulibacter” were recovered by ppk1 -targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “ Candidatus Accumulibacter”-specific 16S rRNA and “ Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “ Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “ Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “ Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1 , demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “ Candidatus Accumulibacter” clades. The relative distributions of “ Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “ Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.
Search