Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal


Publication

Citation
Peterson et al. (2008). Environmental Microbiology 10 (10)
Names (1)
Subjects
Ecology, Evolution, Behavior and Systematics Microbiology
Abstract
Summary Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal, but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for global dispersal of particular Candidatus Accumulibacter strains, which we hypothesize is facilitated by the ability of Candidatus Accumulibacter to persist in environmental habitats. In the current study, we used sequencing of a phylogenetic marker, the ppk 1 gene, to characterize Candidatus Accumulibacter populations in diverse environments, at varying distances from WWTPs. We discovered several new lineages of Candidatus Accumulibacter which had not previously been detected in WWTPs, and also uncovered new diversity and structure within previously detected lineages. Habitat characteristics were found to be a key determinant of Candidatus Accumulibacter lineage distribution while, as predicted, geographic distance played little role in limiting dispersal on a regional scale. However, on a local scale, enrichment of particular Candidatus Accumulibacter lineages in WWTP appeared to impact local environmental populations. These results provide evidence of ecological differences among Candidatus Accumulibacter lineages.
Authors
Peterson, S. Brook; Warnecke, Falk; Madejska, Julita; McMahon, Katherine D.; Hugenholtz, Philip
Publication date
2008-10-01
DOI
10.1111/j.1462-2920.2008.01690.x 

© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license