van Loosdrecht, Mark C. M.


Publications
10

CandidatusSiderophilus nitratireducens”: a psychrophilic,nap-dependent nitrate-reducing iron oxidizer within the new order Siderophiliales

Citation
Corbera-Rubio et al. (2023).
Names
Ca. Siderophilus nitratireducens
Abstract
AbstractNitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-reducing iron-oxidizing (NRFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to
Text

Trehalose as an osmolyte in Candidatus Accumulibacter phosphatis

Citation
de Graaff et al. (2021). Applied Microbiology and Biotechnology 105 (1)
Names
“Accumulibacter phosphatis”
Abstract
Abstract Candidatus Accumulibacter phosphatis is an important microorganism for enhanced biological phosphorus removal (EBPR). In a previous study, we found a remarkable flexibility regarding salinity, since this same microorganism could thrive in both freshwater- and seawater-based environments, but the mechanism for the tolerance to saline conditions remained unknown. Here, we identified and described the role of trehalose as an osmolyte in Ca. Accumulibacter p
Text

Revealing the Metabolic Flexibility of “ Candidatus Accumulibacter phosphatis” through Redox Cofactor Analysis and Metabolic Network Modeling

Citation
Guedes da Silva et al. (2020). Applied and Environmental Microbiology 86 (24)
Names
“Accumulibacter phosphatis”
Abstract
Here, we demonstrate how microbial storage metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity of “ Ca . Accumulibacter phosphatis” to act like glycogen-accumulating organisms (GAOs). These observations stem from slightly different experimental conditions,
Text

Galacturonate Metabolism in Anaerobic Chemostat Enrichment Cultures: Combined Fermentation and Acetogenesis by the Dominant sp. nov. “Candidatus Galacturonibacter soehngenii”

Citation
Valk et al. (2018). Applied and Environmental Microbiology 84 (18)
Names
“Galacturonatibacter soehngenii”
Abstract
This study on d -galacturonate metabolism by open, mixed-culture enrichments under anaerobic, d -galacturonate-limited chemostat conditions shows a stable and efficient fermentation of d -galacturonate into acetate as the dominant organic fermentation product. This fermentation stoichiometry and population analyses provide a valuable baseline for interpretation of the conversion of pectin-rich agricultural feeds
Text

Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions

Citation
Sorokin et al. (2016). Environmental Microbiology 18 (9)
Names
Ca. Syntrophocurvum alkaliphilum
Abstract
Summary Until now anaerobic oxidation of VFA at high salt‐pH has been demonstrated only at sulfate‐reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate a
Text