Chuvochina, Maria


Publications
19

Judicial Opinions 112–122

Citation
Arahal et al. (2022). International Journal of Systematic and Evolutionary Microbiology 72 (8)
Names
Spirosomataceae Endomicrobiia Terrimicrobiia Polyangiia
Abstract
Opinion 112 denies the request to place Seliberia Aristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names because the information provided is insufficient. For the same reason, Opinion 113 denies the request to reject Shewanella irciniae Lee et al. 2006 and Opinion 114 denies the request to reje
Text

Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

Citation
Ji et al. (2021). The ISME Journal 15 (9)
Names
55 Names
Abstract
Abstract Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremioba
Text

A standardized archaeal taxonomy for the Genome Taxonomy Database

Citation
Rinke et al. (2021). Nature Microbiology 6 (7)
Names
14 Names
Abstract

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
15 Names
Abstract
The classDeltaproteobacteriacomprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylumProteobacteria, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the classDeltaproteobacteriaencompassingBdellovibrio-like predators was recently reclassi
Text

Lists of names of prokaryotic Candidatus taxa

Citation
Oren et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (7)
Names
161 Names
Abstract
We here present annotated lists of names ofCandidatustaxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status ofCandidatustaxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names ofCandidatustaxa with additio
Text

A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)

Citation
Rinke et al. (2019). The ISME Journal 13 (3)
Names
11 Names
Abstract
AbstractMarine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level lineage for whi
Text

The importance of designating type material for uncultured taxa

Citation
Chuvochina et al. (2019). Systematic and Applied Microbiology 42 (1)
Names
19 Names
Abstract

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Citation
Parks et al. (2017). Nature Microbiology 2 (11)
Names
Binatus soli Ts Binatus
Abstract
AbstractChallenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5%
Text