Zaugg, Julian


Publications
4

Machine learning and metagenomics identifies uncharacterized taxa inferred to drive biogeochemical cycles in a subtropical hypereutrophic estuary

Citation
Prabhu et al. (2024). ISME Communications 4 (1)
Names
31 Names
Abstract
Abstract Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal–spatial dataset, from a subtropical hypereutrophic estuary. Screening 54 water samples across brackish t
Text

Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

Citation
Ji et al. (2021). The ISME Journal 15 (9)
Names
55 Names
Abstract
Abstract Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremioba
Text

Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient‐poor Antarctic soils

Citation
Montgomery et al. (2021). Environmental Microbiology 23 (8)
Names
15 Names
Abstract
Summary Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome‐assembled genomes ( MAGs ), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses reveale
Text