Sun, Jiarui


Publications
3

Metagenomic insights into taxonomic and functional patterns in shallow coastal and deep subseafloor sediments in the Western Pacific

Citation
Sun et al. (2025). Microbial Genomics 11 (3)
Names
18 Names
Abstract
Marine sediments are vast, underexplored habitats and represent one of the largest carbon deposits on our planet. Microbial communities drive nutrient cycling in these sediments, but the full extent of their taxonomic and metabolic diversity remains to be explored. Here, we analysed shallow coastal and deep subseafloor sediment cores from 0.01 to nearly 600 metres below the seafloor, in the Western Pacific Region. Applying metagenomics, we identified several taxonomic clusters across all samples
Text

Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages

Citation
Sun et al. (2021). ISME Communications 1 (1)
Names
15 Names
Abstract
Abstract Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the
Text

Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution

Citation
Dombrowski et al. (2020). Nature Communications 11 (1)
Names
“Undinarchaeia” “Undinarchaeota” “Naiadarchaeales” “Undinarchaeales” “Naiadarchaeaceae” “Undinarchaeaceae” “Undinarchaeum marinum”
Abstract
AbstractThe recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life’s evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (CandidatusUndinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, like
Text