Kuroda, Kyohei


Publications
7

Metabolic Potential of <scp> Candidatus </scp> Saccharimonadia Including Rare Lineages in Activated Sludge

Citation
Kagemasa et al. (2025). Environmental Microbiology Reports 17 (6)
Names
“Saccharimonadia”
Abstract
ABSTRACT Candidatus Saccharimonadia is a class‐level lineage of ultrasmall bacteria within the phylum Minisyncoccota (formerly Candidate Phyla Radiation or Ca . Patescibacteria), commonly found in activated sludge processes treating municipal wastewater. In this study, we aimed to elucidate the metabolic potential of Ca
Text

Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation

Citation
Nakajima et al. (2025). International Journal of Systematic and Evolutionary Microbiology 75 (2)
Names
Patescibacteriota Minisyncoccus archaeiphilus T Minisyncoccus Minisyncoccaceae Minisyncoccales Minisyncoccia Minisyncoccota
Abstract
In the domain Bacteria, one of the largest, most diverse and environmentally ubiquitous phylogenetic groups, Candidatus Patescibacteria (also known as candidate phyla radiation/CPR), remains poorly characterized, leaving a major knowledge gap in microbial ecology. We recently discovered a novel cross-domain symbiosis between Ca. Patescibacteria and Archaea in highly purified enrichment cultures and proposed Candidatus taxa for the characterized species, including Ca. Minisyncoccus archaeophilus
Text

Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant

Citation
Fujii et al. (2024). Environmental Microbiology Reports 16 (5)
Names
Ca. Patescibacteria
Abstract
Abstract Candidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class‐level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1‐5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capaci
Text

Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. (2024). mBio 15 (3)
Names
Ca. Patescibacteria
Abstract
ABSTRACT To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of
Text

Microscopic and metatranscriptomic analyses revealed unique cross-domain symbiosis betweenCandidatusPatescibacteria/candidate phyla radiation (CPR) and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. (2023).
Names
“Paceibacteria” Ca. Patescibacteria “Yanofskyibacteriota”
Abstract
AbstractTo verify the parasitic lifestyle ofCandidatusPatescibacteria in the enrichment cultures derived from a methanogenic bioreactor, we applied multifaceted approaches combining cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses. Cultivation experiments with the addition of exogenous methanogenic archaea with acetate, amino acids, and nucleoside monophosphates and 16S rRNA gene sequencing confirmed the increase in the relative abundance ofCa. Patescibacter
Text

Symbiosis between Candidatus Patescibacteria and Archaea Discovered in Wastewater-Treating Bioreactors

Citation
Kuroda et al. (2022). mBio 13 (5)
Names
Ca. Patescibacteria
Abstract
One highly diverse phylogenetic group of Bacteria, Ca . Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya.

Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen

Citation
Nobu et al. (2016). The ISME Journal 10 (10)
Names
“Methanofastidiosia” Ca. Methanofastidiosum Ca. Methanofastidiosum methylothiophilum
Abstract
AbstractThe ecophysiology of one candidate methanogen class WSA2 (or Arc I) remains largely uncharacterized, despite the long history of research on Euryarchaeota methanogenesis. To expand our understanding of methanogen diversity and evolution, we metagenomically recover eight draft genomes for four WSA2 populations. Taxonomic analyses indicate that WSA2 is a distinct class from other Euryarchaeota. None of genomes harbor pathways for CO2-reducing and aceticlastic methanogenesis, but all posses
Text