He, Yongrui


Publications
3

ABA-CsABI5-CsCalS11 module upregulates Callose deposition of citrus infected with Candidatus Liberibacter asiaticus

Citation
Yao et al. (2024). Horticulture Research 11 (2)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing (HLB) primarily caused by Candidatus Liberibacter asiaticus (CLas) has been threatening citrus production globally. Under HLB conditions, an excessive accumulation of the polysaccharide callose in citrus phloem occurs, leading to phloem blockage and starch accumulation in leaves. The callose production is controlled by callose synthases (CalS), which have multiple members within plants. However, the knowledge of callose production in the citrus upon infectio

Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of “Candidatus Liberibacter asiaticus” in citrus

Citation
Wang et al. (2023). Molecular Horticulture 3 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractCitrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the te

Overexpression of a “Candidatus Liberibacter Asiaticus” Effector Gene CaLasSDE115 Contributes to Early Colonization in Citrus sinensis

Citation
Du et al. (2022). Frontiers in Microbiology 12
Names
Liberibacter
Abstract
Huanglongbing (HLB), caused by “Candidatus liberibacter asiaticus” (CaLas), is one of the most devastating diseases in citrus but its pathogenesis remains poorly understood. Here, we reported the role of the CaLasSDE115 (CLIBASIA_05115) effector, encoded by CaLas, during pathogen-host interactions. Bioinformatics analyses showed that CaLasSDE115 was 100% conserved in all reported CaLas strains but had sequence differences compared with orthologs from other “Candidatus liberibacter.” Prediction o