Insects


Publications
20

Diaphorina citri Genome Possesses a Complete Melatonin Biosynthesis Pathway Differentially Expressed under the Influence of the Phytopathogenic Bacterium, Candidatus Liberibacter asiaticus

Citation
Nehela, Killiny (2021). Insects 12 (4)
Names
Ca. Liberibacter asiaticus
Abstract
Melatonin is synthesized from the amino acid L-tryptophan via the shikimic acid pathway and ubiquitously distributed in both prokaryotes and eukaryotes. Although most of melatonin biosynthesis genes were characterized in several plants and animal species including the insect model, Drosophila melanogaster, none of these enzymes have been identified from the Asian citrus psyllid, Diaphorina citri. We used comprehensive in silico analysis and gene expression techniques to identify the melatonin bi

Incidence of Diaphorina citri Carrying Candidatus Liberibacter asiaticus in Brazil’s Citrus Belt

Citation
Wulff et al. (2020). Insects 11 (10)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is a citrus disease of worldwide importance, associated with the presence of Candidatus Liberibacter asiaticus (Las) and vectored by the psyllid Diaphorina citri in Asia and the Americas. To properly manage HLB, removal of inoculum sources and control of the psyllid are undertaken. We evaluated the percentage of the psyllid population with Las, sampled from yellow sticky traps over a three-year period and its relationship with insect population, regions, season of the year, a

‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae

Citation
Quintana-González de Chaves et al. (2020). Insects 11 (8)
Names
“Liberibacter solanacearum” Liberibacter
Abstract
Bacteria belonging to ‘Candidatus Liberibacter spp.’ are associated with various severe diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid is currently present in the islands and mainland Portugal and Spain, where the prevalence of ‘Ca. Liberibacter solanacearum’ (CaLsol) associated to a carrot disease is high. Trioza erytreae normally feeds

Development on Infected Citrus over Generations Increases Vector Infection by ‘Candidatus Liberibacter Asiaticus in Diaphorina citri’

Citation
de Souza Pacheco et al. (2020). Insects 11 (8)
Names
Ca. Liberibacter asiaticus Liberibacter
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is a major causal agent of citrus Huanglongbing (HLB), which is transmitted by Asian citrus psyllid (ACP), Diaphorina citri, causing severe losses in various regions of the world. Vector efficiency is higher when acquisition occurs by ACP immature stages and over longer feeding periods. In this context, our goal was to evaluate the progression of CLas population and infection rate over four ACP generations that continuously developed on infected citrus

Drench Application of Systemic Insecticides Disrupts Probing Behavior of Diaphorina citri (Hemiptera: Liviidae) and Inoculation of Candidatus Liberibacter asiaticus

Citation
Carmo-Sousa et al. (2020). Insects 11 (5)
Names
Ca. Liberibacter asiaticus
Abstract
Candidatus Liberibacter asiaticus (CLas) is a phloem-limited bacterium that is associated with the Huanglongbing (HLB) disease of citrus and transmitted by the psyllid, Diaphorina citri. There are no curative methods to control HLB and the prevention of new infections is essential for HLB management. Therefore, the objective of our study was to determine the effects of systemic insecticides, such as the neonicotinoids imidacloprid, thiamethoxam, and a mixture of thiamethoxam and chlorantranilipr

Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production

Citation
Wan et al. (2020). Insects 11 (5)
Names
“Liberibacter solanacearum” Liberibacter
Abstract
The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America that has recently invaded New Zealand and Australia. The potential for economic losses accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which global potato cultivation is a

Transcriptome Analyses of Diaphorina citri Midgut Responses to Candidatus Liberibacter Asiaticus Infection

Citation
Yu et al. (2020). Insects 11 (3)
Names
Ca. Liberibacter asiaticus Liberibacter
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important transmission vector of the citrus greening disease Candidatus Liberibacter asiaticus (CLas). The D. citri midgut exhibits an important tissue barrier against CLas infection. However, the molecular mechanism of the midgut response to CLas infection has not been comprehensively elucidated. In this study, we identified 778 differentially expressed genes (DEGs) in the midgut upon CLas infection, by compa

Seasonal Occurrence of Potato Psyllid (Bactericera Cockerelli) and Risk of Zebra Chip Pathogen (Candidatus Liberibacter Solanacearum) in Northwestern New Mexico

Citation
Djaman et al. (2019). Insects 11 (1)
Names
“Liberibacter solanacearum” Liberibacter
Abstract
Potato psyllid (Bactericera cockerelli) is one of the most important pests in potatoes (Solanum tuberosum L.) due to its feeding behavior and the transmission of a bacterium (Candidatus Liberibacter solanacearum) that causes zebra chip disease, altering the quality of the potato tuber and the fried potato chip or french fry. This pest is thus a threat to the chip potato industry and often requires preventive measures including the use of costly insecticides. The objectives of this research were

A Transcriptomics Approach Reveals Putative Interaction of Candidatus Liberibacter Solanacearum with the Endoplasmic Reticulum of Its Psyllid Vector

Citation
Ghosh et al. (2019). Insects 10 (9)
Names
Ca. Liberibacter asiaticus “Liberibacter solanacearum” Liberibacter
Abstract
Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identifica