Genomic diversity across the Rickettsia and ‘Candidatus Megaira’ genera and proposal of genus status for the Torix group

Davison et al. (2022). Nature Communications 13 (1)
Names (2)
Ca. Megaira “Tisiphia”
General Biochemistry, Genetics and Molecular Biology General Chemistry General Physics and Astronomy Multidisciplinary
AbstractMembers of the bacterial genusRickettsiawere originally identified as causative agents of vector-borne diseases in mammals. However, manyRickettsiaspecies are arthropod symbionts and close relatives of ‘CandidatusMegaira’, which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes ofRickettsiaspecies from understudied groups, including the Torix group, and two genomes of ‘Ca. Megaira’ from various insects and microeukaryotes. Our analyses of the new genomes, in comparison with previously described ones, indicate that the accessory genome diversity and broad host range of TorixRickettsiaare comparable to those of all otherRickettsiacombined. Therefore, the Torix clade may play unrecognized roles in invertebrate biology and physiology. We argue this clade should be given its own genus status, for which we propose the name ‘CandidatusTisiphia’.
Publication date