Multidisciplinary


Publications
185

Zoothamnium mariella sp. nov., a marine, colonial ciliate with an atypcial growth pattern, and its ectosymbiont Candidatus Fusimicrobium zoothamnicola gen. nov., sp. nov

Citation
Kendlbacher et al. (2024). PLOS ONE 19 (4)
Names
Ca. Fusimicrobium zoothamnicola
Abstract
Ciliates are unicellular eukaryotes, regularly involved in symbiotic associations. Symbionts may colonize the inside of their cells as well as their surface as ectosymbionts. Here, we report on a new ciliate species, designated as Zoothamnium mariella sp. nov. (Peritrichia, Sessilida), discovered in the northern Adriatic Sea (Mediterranean Sea) in 2021. We found this ciliate species to be monospecifically associated with a new genus of ectosymbiotic bacteria, here proposed as Candidatus Fusimicr

Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans

Citation
Moraïs et al. (2024). Science 383 (6688)
Names
Ruminococcus ruminiciens Ruminococcus primiciens Ruminococcus hominiciens
Abstract
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was

Global diversity of enterococci and description of 18 previously unknown species

Citation
Schwartzman et al. (2024). Proceedings of the National Academy of Sciences 121 (10)
Names
Enterococcus mansonii Enterococcus ikei Enterococcus myersii Enterococcus leclercqii Enterococcus ferrettii Enterococcus wittei Enterococcus courvalinii Enterococcus palustris Enterococcus dunnyi Enterococcus huntleyi Enterococcus mangumiae Enterococcus moelleringii Enterococcus murrayae Enterococcus testudinis Enterococcus lowellii Enterococcus willemsii Enterococcus lemimoniae Enterococcus clewellii Vagococcus giribetii
Abstract
Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-

First detection of Candidatus Rickettsia tarasevichiae in Hyalomma marginatum ticks

Citation
Su et al. (2024). PLOS ONE 19 (2)
Names
Ca. Rickettsia tarasevichiae
Abstract
Ticks are important vectors of zoonotic diseases and play a major role in the circulation and transmission of many rickettsial species. The aim of this study was to investigate the carriage of Candidatus Rickettsia tarasevichiae (CRT) in a total of 1168 ticks collected in Inner Mongolia to elucidate the potential public health risk of this pathogen, provide a basis for infectious disease prevention, control and prediction and contribute diagnostic ideas for clinical diseases that present with fe

The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus

Citation
Carter et al. (2023). Nature Communications 14 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractThe bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into th

Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle

Citation
Li et al. (2023). Nature Communications 14 (1)
Names
“Houyibacterium oceanica” “Houyibacterium” “Houyibacteriaceae” “Houyihalomonas phototrophica” “Xihehalomonas phototrophica” “Xihemonas sinensis” “Kuafubacteria” “Kuafubacterium phototrophica” “Kuafucaenimonas phototrophica” “Kuafuhalomonas phototrophica” “Xihepedomonas phototrophica” “Xihelimnomonas phototrophica” “Xihecaenimonas phototrophica” “Kuafubacteriales” “Kuafubacteriaceae” “Xihehalomonas” “Xihemonas” “Xihecaenibacterium” “Houyihalomonas” “Xihelimnobacterium phototrophica” “Xihelimnobacterium” “Xihemonas phototrophica” “Xihecaenibacterium phototrophica” “Xihebacterium phototrophica” “Xihebacterium glacialis” “Xihebacterium aquatica” “Xihemicrobium phototrophica” “Xihemicrobium aquatica” “Kuafubacterium” “Xihebacterium” “Xihemicrobium” “Xihecaenimonas” “Xihelimnomonas” “Xihepedomonas” “Kuafuhalomonas” “Kuafucaenimonas”
Abstract
AbstractPhotosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction cent

Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’

Citation
Zhang et al. (2023). Nature Communications 14 (1)
Names
Ca. Methanoperedens nitroreducens
Abstract
AbstractAnaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to

Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut

Citation
Ye et al. (2023). Nature Communications 14 (1)
Names
Taurinivorans muris Ts Taurinivorans
Abstract
AbstractTaurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dep